Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich Bakterien starken Temperaturschwankungen anpassen

10.07.2013
Das Bakterium Vibrio Vulnificus tummelt sich in Tümpeln, Brackwasser oder Küstengebieten bei Temperaturen von etwa 15 Grad Celsius. Befällt es aber einen menschlichen Wirt, muss es auch in der Lage sein, bei 37 Grad zu überleben.

Wie es das macht, haben Frankfurter Forscher nun erstmals aufgeklärt. In der Fachzeitschrift Nature beschreiben sie einen Gen-Schalter, der seine Struktur in Abhängigkeit von der Verfügbarkeit niedermolekularer Baustoffe und gleichzeitig der Temperatur verändert. Nach diesem Vorbild könnten künftig auch maßgeschneiderte temperatursensitive Genschalter gebaut werden.


Schematische Darstellung der drei verschiedenen Zustände des RNA-Genschalters. Unterlegt ist eine elektronen-mikroskopische Aufnahme des Bakteriums Vibrio vulnificus bei 13000-facher Vergrößerung (Bild B stammt von der Public Library des CDC erstellt durch Janice Haney Carr und James Gathany)

In der Zelle regulieren genetische Schalter aus RNA die Proteinbiosynthese. Eine besondere Klasse von genetischen RNA-Schaltern bindet direkt an niedermolekulare Baustoffe wie Adenin. Davon brauchen Zellen mal mehr, und mal weniger. Gibt es wenig Adenin, dann ist der RNA-Schalter aus. Ist dagegen zuviel Adenin vorhanden, dann bindet der Schalter Adenin.

Gleichzeitig schaltet er in den Zellen ein Programm an, um Proteine herzustellen, die diesen Baustoff aus der Zelle entfernen. Wie sich diese Aus-An-Schalter den großen Temperaturschwankungen, denen Vibrio ausgesetzt ist, gleichbleibend gut anpassen können, war bisher nicht bekannt. Die Arbeitsgruppe von Prof. Harald Schwalbe vom Institut für Organische Chemie und Chemische Biologie der Goethe-Universität hat nun das Rätsel dieser regulatorischen Herausforderung für Bakterien gelöst und in der renommierten Fachzeitschrift Nature publiziert.

„Die Funktion dieser RNA ist viel komplexer, als wir zuerst gedacht haben. Sie ändert ihre Gestalt je nach Temperatur und dem Angebot an Adenin“, fasst Anke Reining die Ergebnisse ihrer Doktorarbeit zusammen. Demnach liegt der RNA-Schalter in drei verschiedenen dreidimensionalen Strukturen vor: insbesondere gibt es zwei verschiedene Strukturen, in denen der Genschalter ausgestaltet ist. Bis jetzt ging man davon aus, es gäbe nur einen Aus-Zustand. Welcher der beiden Aus-Zustände nun vorliegt, hängt von der Temperatur ab. „Dieser RNA-Schalter funktioniert wie ein Thermostat, er regelt die Protein-Synthese über einen Temperaturbereich von 40 Grad, um auf Schwankungen der Adenin-Konzentration in konstanter Weise reagieren zu können“, berichtet Dr. Boris Fürtig, wissenschaftlicher Mitarbeiter in Schwalbes Arbeitsgruppe.

„In meinem Team haben wir sehr lange an diesem Puzzle gearbeitet. Dass es zwei verschiedene Aus-Zustände gibt, hat uns verblüfft. Und noch mehr, dass nur einer der beiden Zustände angeschaltet werden kann. Der völlig neuartige Mechanismus bietet Chemikern und Biologen nun einen Bauplan für RNA-Schalter, die auch über den physiologischen bedeutsamen Temperaturbereich von 5 bis 40 Grad Celsius verlässlich arbeiten“, erklärt Harald Schwalbe.

Publikation: Anke Reining, Senada Nozinovic, Kai Schlepckow, Florian Buhr, Boris Fürtig und Harald Schwalbe: Three-state mechanism couples ligand and temperature sensing in riboswitches, Nature, DOI: 10.1038/nature12378

Eine Abbildung zum Download finden Sie hier:
http://www.muk.uni-frankfurt.de/47248191/169
Bildtext:
Schematische Darstellung der drei verschiedenen Zustände des RNA-Genschalters. Unterlegt ist eine elektronen-mikroskopische Aufnahme des Bakteriums Vibrio vulnificus bei 13000-facher Vergrößerung (Bild B stammt von der Public Library des CDC erstellt durch Janice Haney Carr und James Gathany)

Informationen: Prof. Harald Schwalbe, Institut für Organische Chemie und Chemische Biologie, Campus Riedberg, Tel.: (069) 798-29130; schwalbe@em.uni-frankfurt.de

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 – 763 12531, E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht JUMP-1 – ein magnetisches Polymer aus Jena
28.06.2017 | Friedrich-Schiller-Universität Jena

nachricht Immunabwehr: Wie Proteine Membranbläschen zusammenbringen
28.06.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Umfangreiche Fördermaßnahmen für Forschung an Chromatin, Nebenniere und Krebstherapie

28.06.2017 | Förderungen Preise

Immunabwehr: Wie Proteine Membranbläschen zusammenbringen

28.06.2017 | Biowissenschaften Chemie

Das Auto lernt vorauszudenken

28.06.2017 | Maschinenbau