Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Bakterien sauerstoffabhängig die Bewegungsrichtung ändern: Molekulare Interaktionen

25.06.2012
RUB-Forscher und japanische Kollegen berichten im Journal of Biological Chemistry

Wie genau einzellige Organismen wie Bakterien es schaffen, auf ihre Umwelt zu reagieren, ist nicht vollkommen verstanden. Neue Erkenntnisse hat Dr. Samir El-Mashtoly vom RUB-Lehrstuhl Biophysik, geleitet von Prof. Dr. Klaus Gerwert, zusammen mit Kollegen aus Japan gewonnen.


Strukturelle Änderungen in HemAT: Wenn Sauerstoff an die sensorische Domäne bindet (aus methodischen Gründen wurde das Experiment mit Kohlenmonoxid, CO, anstatt mit Sauerstoff durchgeführt), ändert sich die Proteinstruktur in der Umgebung der sensorischen Domäne. Dadurch verschieben sich Helix B und G. Das wiederum beeinflusst die benachbarte H-Helix, die sich bis in die Signal-Domäne fortsetzt. Abbildung: Samir El-Mashtoly

Im Journal of Biological Chemistry beschreiben die Forscher die molekularen Interaktionen im Bakterium Bacillus subtilis während der Aerotaxis, also der Änderung in der Bewegungsrichtung abhängig von der Sauerstoffkonzentration in der Umgebung. Das Team untersuchte strukturelle Änderungen des Proteins HemAT. Über eine Signalkette sendet es Kommandos an den Motor der Schwimmgeißel des Bakteriums.

Signalübertragungskette

Zunächst bindet Sauerstoff an die Häm-Gruppe von HemAT; diese Gruppe ist auch aus dem Hämoglobin roter Blutkörperchen bekannt und wird als „sensorische Domäne“ von HemAT bezeichnet. Durch die Bindung ändert sich die Struktur der sensorischen Domäne. Das löst weitere strukturelle Veränderungen in HemAT aus, die letztendlich die Signal-Domäne des Proteins erreichen. Die Signal-Domäne überträgt dann die Information über die steigende Sauerstoffkonzentration an weitere Proteine in der Zelle. Diese Proteine leiten die Botschaft an den Motor der Schwimmgeißel weiter. Das Forscherteam untersuchte, wie die Information innerhalb von HemAT von der sensorischen Domäne zur Signal-Domäne wandert.

Proteinhelices übermitteln die Botschaft

Zu diesem Zweck nutzte Dr. El-Mashtoly die Einrichtung für zeitaufgelöste Ultraviolett-Resonanz-Raman-Spektroskopie am Picobiology Institute in Japan. Mit dieser Methode lassen sich zum Beispiel strukturelle Informationen über das Protein und Interaktionen von Wasserstoffbrückenbindungen verfolgen – auf einer Nano- bis Mikrosekunden-Zeitskala. Die Ergebnisse legen nahe, dass die strukturellen Änderungen in der sensorischen Domäne, also der Häm-Gruppe, zwei Proteinhelices in HemAT verschieben. Diese Verschiebung beeinflusst eine weitere Helix, die bis in die Signal-Domäne hineinragt. Über eine Serie von strukturellen Änderungen erreicht also die Information über die Sauerstoffbindung die Signal-Domäne.

Titelaufnahme

S. El-Mashtoly, M. Kubo, Y. Gu, H. Sawai, S. Nakashima, T. Ogura, S. Aono, T. Kitagawa (2012): Site-specific protein dynamics in communication pathway from sensor to signaling domain of oxygen sensor protein, HemAT-Bs, Journal of Biological Chemistry, doi: 10.1074/jbc.M112.357855

Weitere Informationen

Dr. Samir El-Mashtoly, Lehrstuhl Biophysik, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-29833
samir.elmashtoly@bph.rub.de

Angeklickt

Biophysik an der RUB
http://www.bph.rub.de/

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.bph.rub.de/
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Buche in die Gene schauen - Vollständiges Genom der Rotbuche entschlüsselt
11.12.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Mit den Augen der Biene: Zoologe der Uni Graz entwickelt Verfahren zur Verbesserung dunkler Bilder
11.12.2017 | Karl-Franzens-Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit