Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien produzieren Bio-Kunststoffe und Zwischenprodukte

22.03.2017

Im Juli 2015 richtete das Bayerische Staatsministerium für Umwelt und Verbraucherschutz den Projektverbund „Ressourcenschonende Biotechnologie in Bayern – BayBiotech“ ein. Ziel ist es, durch anwendungsbezogene Forschungsvorhaben im Bereich der Biotechnologie einen Beitrag zur Ressourcenschonung zu leisten und die Umstellung auf eine nachhaltige Bioökonomie zu unterstützen. Wissenschaftler der Technischen Universität München (TUM) und der Universität Bayreuth stellten heute in Erlangen ihre Forschungsergebnisse vor.

Angesichts endlicher Vorräte an Erdöl und Erdgas geht die Entwicklung klar in Richtung ressourcenschonender und nachhaltiger Produktion von Kunststoffen und chemischen Zwischenprodukten mit biotechnologischen Verfahren. Dazu hat das Bayerischen Ministerium für Umwelt und Verbraucherschutz den Projektverbund „Ressourcenschonende Biotechnologie in Bayern – BayBiotech“ auf den Weg gebracht.


Gehäusedeckel aus einer Mischung von Polyhydroxy-Buttersäure mit Polypropylencarbonat

Bild: Andreas Battenberg / TUM


Technikum des Zentrums für Weiße Biotechnologie auf dem Campus Garching

Bild: Andreas Battenberg / TUM

„Wir wollen unsere bisherigen Erfolge beim Schutz der Umwelt auf dem Weg zu einer nachhaltigen Bioökonomie weiter ausbauen. Der Projektverbund will mit Hilfe der Biotechnologie innovative und umweltfreundliche Produktionsverfahren vorantreiben. Mit dem Werkzeugkasten der Natur können wir die Produkte von morgen aus Pflanzen und Bakterien gewinnen.

Was heute der Pullover aus Wolle ist, kann morgen der Autoreifen aus pflanzlichen Stoffen sein. Unser Ziel ist eine nachhaltige Bioökonomie, die Ökologie und Wirtschaft durch die verantwortungsvolle Nutzung biologischer Ressourcen miteinander verbindet“, sagte Ulrike Scharf, Bayerische Staatsministerin für Umwelt und Verbraucherschutz, deren Ministerium den Projektverbund mit rund 2 Millionen Euro finanziert.

Maßgeschneiderte Bio-Kunststoffe

Einen Schwerpunkt des Projekts bildet die biotechnologische Herstellung maßgeschneiderter Kunststoffe aus Polyhydroxybuttersäure (PHB). Dieses Biopolymer wird von Bakterien als Speicherstoff produziert. PHB hat ähnliche Eigenschaften wie das aus Erdöl hergestellte Polypropylen, ist jedoch deutlich spröder und daher sehr viel schwerer zu verarbeiten.

Die Bakterien verknüpfen die Einzelbausteine immer in der gleichen Art und Weise. Daher bildet das Material kristalline Bereiche und ist spröde. Wissenschaftlerinnen und Wissenschaftler an den Lehrstühlen für Makromolekulare Chemie in Garching und für Chemie Biogener Rohstoffe in Straubing zeigten im Rahmen des Projekts, wie die mechanischen Eigenschaften des Biopolymers durch Zugabe anderer Kunststoffe, beispielsweise biologisch hergestellten Polylactiden, verändert werden können.

Neue Möglichkeiten eröffnet die Trennung der Herstellung der Einzelbausteine von der Polymerisierung. Das Team von Thomas Brück, Professor für Industrielle Biokatalyse der TU München, entwickelte eine ressourcenschonende biotechnologische Produktion der Monomere aus Kleie, die als kostengünstiges Nebenprodukt bei der Mehlherstellung anfällt.

Indem sie diese Monomere mit solchen mischen, die aus beta-Butyrolacton hergestellt wurden, können Forschende der Lehrstühle für Makromolekulare Chemie und für die Chemie Biogener Rohstoffe gezielt Unregelmäßigkeiten in das Polymer einbauen und so die Materialeigenschaften für die jeweilige Anwendung maßschneidern. Auch verbesserte metallische und biogene Katalysatoren für die Öffnung des Butyrolacton-Rings sind Teil der Forschungsarbeit.

Biotechnologische Produktion chemischer Zwischenprodukte

Viele biotechnologische Prozesse nutzen sich spontan bildende Biofilme. Allerdings sind diese oft sehr empfindlich und nicht an alle gewünschten Reaktionen anzupassen. Teams der Lehrstühle für Bioprozesstechnik und für Makromolekulare Chemie II der Universität Bayreuth entwickelten daher künstliche Biofilme, bei denen die Mikroorganismen in eine maßgeschneiderte synthetische Polymermatrix eigebettet werden. Dadurch sind die Bakterien sehr viel robuster und können für unterschiedlichste Einsatzfälle genutzt werden.

Essigsäurebakterien werden bereits für die Produktion von Vitamin-C genutzt. Da das Bakterium in der Natur auf verschiedenste Umweltreize reagieren muss, besitzt es verschiedenste Enzyme an seiner Oberfläche. Mit neu entwickelten molekularbiologischen Methoden gelang es den Forscherinnen und Forschern der Lehrstühle für Mikrobiologie am TUM-Standort Weihenstephan und am Lehrstuhl für Bioverfahrenstechnik in Garching, nicht benötigte Enzyme zu entfernen. Die Energie des Bakteriums konzentriert sich damit auf die für die erwünschte biotechnologische Umsetzung relevanten Enzyme. Die Aktivität steigt und Nebenreaktionen werden unterbunden.

Verbindungen, die sich wie Bild und Spiegelbild zueinander verhalten, sind wichtige Bausteine für die Synthese pharmazeutischer Produkte. Sogenannte Enreduktasen können Wasserstoffatome an Doppelbindungen anlagern und damit diese Chiralität genannte Eigenschaft erzeugen. Beispielsweise entsteht so aus dem im Kümmelöl vorkommenden Carvon das chirale Dihydrocarvon. Mit verschiedenen Methoden des Protein Engineerings veränderten Wissenschaftlerinnen und Wissenschaftler am Lehrstuhl für Bioverfahrenstechnik der TU München ein entsprechendes Enzym so, dass es eine mehr als viermal höhere Aktivität erreicht.

Synergie der Verbundforschung

„Die erfolgreiche Arbeit des Forschungsverbunds zeigt beispielhaft den großen Nutzen der interdisziplinären Arbeit im Verbund über verschiedene Standorte hinweg“, sagte Thomas Brück, Professor für Industrielle Biokatalyse der TU München. „Die Verknüpfung der drei TUM-Standorte Straubing, Weihenstephan und Garching spannt den Bogen von der Grundlagenforschung bis zur Anwendungsentwicklung und beschleunigt den Weg zur tatsächlichen Umsetzung enorm.“

Auf Seiten der TU München waren der Lehrstuhl für Chemie Biogener Rohstoffe und die Professur für Biogene Polymere in Straubing, der Lehrstuhl für Mikrobiologie in Weihenstephan sowie die Lehrstühle für Bioverfahrenstechnik, für Makromolekulare Chemie und für Industrielle Biokatalyse in Garching beteiligt. Weitere Mitglieder des Verbunds sind die Lehrstühle für Bioprozesstechnik und für Makromolekulare Chemie II der Universität Bayreuth sowie der Lehrstuhl für Bioverfahrenstechnik der Universität Erlangen-Nürnberg, der den vom Bayerischen Staatsministerium für Umwelt und Verbraucherschutz finanzierten Projektverbund koordiniert.

Kontakt:

Prof. Dr. Thomas Brück
Technische Universität München
Professur für Industrielle Biokatalyse
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 13253 – E-Mail: brueck@tum.de
Web: http://www.ibc.ch.tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics