Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Bakterien die Grippe bekommen und ihre Messer wetzen

31.03.2011
Neuer Weg zur Aktivierung des bakteriellen Immunsystems entdeckt

Auch Mikroorganismen können durch Viren infiziert werden. Folglich haben sie Abwehrmechanismen entwickelt, um feindliche Angriffe abwehren zu können. Erst kürzlich wurde bei Bakterien und Archaeen der Gen-Protein-Komplex CRISPR/Cas entdeckt, der als Immunsystem fremde Gene unschädlich macht. Das System, das auch als prokaryotische RNA-Interferenz bekannt ist, besteht aus Proteinen und kurzen RNA-Molekülen (crRNAs), die feindliche Gene blockieren.

Ein wichtiger Teil der Aktivierung des mikrobiellen Immunsystems ist die Reifung der crRNAs. Wissenschaftler im schwedischen Umeå haben jetzt in Zusammenarbeit mit Kollegen der Universität Würzburg einen neuen Weg gefunden, der zur Aktivierung der crRNAs führt. Die Ergebnisse werfen neues Licht auf die Übertragung von Virulenz bei Krankenhauskeimen und die Immunität von Bakterienstämmen bei der Herstellung von Milchprodukten (Nature, 31. März 2011).

Mikroorganismen sind ständigen Angriffen durch Viren, Bakteriophagen genannt, oder ringförmigen Nukleinsäuren anderer Bakterien, Plasmiden, ausgesetzt. Diese fremden Gene können das Genom des Wirts zur Selbstzerstörung umprogrammieren oder ihm neue Eigenschaften zur Antibiotika-Resistenz verleihen.

Um sich gegen eine Infektion zu schützen, entwickelten Mikroorganismen ein ausgeklügeltes Abwehrsystem. CRISPRs ist die Abkürzung für die englische Bezeichnung Clustered Regularly Interspaced Short Palindromic Repeats. Dies sind Genabschnitte für ein Protein (Cas) und zusätzlich sogenannten Spacern, Abschnitten, die spezifisch fremde Gene erkennen und deren Zerstörung bestimmen. Zwischen diesen kodierenden Gensequenzen befinden sich wiederholende gleiche Genabschnitte. Das mikrobielle Immunsystem ist sehr komplex und es existieren viele Subtypen, die sich in der Kombination der beteiligten Genabschnitte unterscheiden.

Der CRISPR/CAS Mechanismus ist erst seit wenigen Jahren bekannt und viele Details um seine Regulation und Mechanismen sind noch unklar. Völlig neue Erkenntnisse liefert nun die Forschungsarbeit von Dr. Emmanuelle Charpentier und ihrem Team am Labor für Molekulare Infektionsmedizin (MIMS) im schwedischen Umeå in Zusammenarbeit mit Prof. Dr. Jörg Vogel am Institut für Molekulare Infektionsbiologie (IMIB) der Universität Würzburg, Deutschland.

Wie funktioniert das Immunabwehrsystem CRISPR/Cas in Mikroorganismen? Wenn Bakterien und Archaeen Virus- oder Plasmid-Angriffen ausgesetzt sind, werden kurze Stücke von der feindlichen DNA injiziert und in den CRISPR-Genkomplex eingebaut. Diese Veränderung des Genoms führt zur Umprogrammierung der mikrobiellen Wirtszelle, die die eingebauten Genabschnitte als immunologisches Gedächtnis nutzt und der Zelle Immunität gegen künftige Infektionen mit den gleichen Genen verleiht. Im nachfolgenden Prozess, der crRNA-Reifung, bildet die Wirtszelle RNA-Moleküle, die dem CRISPR-Komplex korrespondieren. Diese RNA-Moleküle werden in spezifische Sequenzen gespalten und im letzten Schritt der Immunreaktion, dem sogenannten Stilllegen der fremden Gene, erkennen diese kurzen crRNA-Stückchen das Fremdgenom wieder und führen es der zellulären Abbaumaschine zur Zerstörung zu.

Bisherige Forschung ging davon aus, dass bei allen Reaktionen des Immunsystems die Beteiligung von Cas-Protein ausreicht. Die neusten Forschungsergebnisse von Charpentier und ihren Kollegen zeigen jetzt, dass zusätzliche Faktoren im Wirtsgenom für die Aktivierung des CRISPR-Mechanismus benötigt werden, die an RNA-Interferenz bei höheren Organismen erinnern.

“Wir haben die CRISPR/Cas-Immunreaktion in unserem Modellorganismus, Streptococcus pyogenes, einem humanpathogenen Bakterium untersucht“, erklärt Dr. Emmanuelle Charpentier, die die Studie leitete und ehemals an den Max F. Perutz Laboratories in Wien, Österreich, tätig war. „Völlig überraschend entdeckten wir einen neuen Reaktionsweg zur Aktivierung von CRISPR, bei dem - bisher völlig unbekannt - drei neue Faktoren an der Reifung der crRNA beteiligt sind: (1) kurze RNA-Stücke (small RNA), (2) ein Protein des Wirts, Endoribonuklease III genannt, und (3) ein bisher unbekanntes Protein Csn1.“

“Das Zusammenspiel dieser Faktoren führt zu einem besonders exakten Abwehrmechanismus“, erklärt Charpentier. „Das kleine Erkennungs-RNA –Molekül bindet jeweils an der sich wiederholenden Stelle der CRISPRs-Vorläufer RNA. Dieser Komplex wird dann von der bakterieneigenen Endoribonuklease III erkannt und spaltet unter Mithilfe von Csn1 die RNA in die kurzen crRNA-Stückchen. Diese können die fremden Gene in Zukunft korrekt erkennen und beseitigen.“ Bei Eukaryoten sind es die Enzyme Dicer und Drosha, die mit den Endoribonukleasen III zusammenwirken und zur Bildung von kleinen interferierenden RNA-Molekülen führen.

„So gesehen, haben wir nun gezeigt, dass der bakterielle Mechanismus zur Reifung von crRNA unter Beteiligung von Endoribonuklease III während der Evolution zu Eukaryonten konserviert blieb“, erklärt Charpentier. “Dies zeigt, dass das CRISPR/Cas System in vielen Varianten in unterschiedlichen Organismen vorkommen kann. Zusätzlich stellt sich nun die Frage, ob vielleicht noch weitere Faktoren der bakteriellen Wirtszelle bei Immunabwehr benötigt werden könnten. Dies werden künftige Forschungsprojekte zeigen.“

“Der neue Reaktionsweg schützt die Bakterien davor, von Phagen abgetötet zu werden“, fährt Charpentier fort. “Wir konnten zeigen, dass dieser Mechanismus die Bakterien vor der Übertragung weiterer Krankheitsfaktoren durch Viren schützt. Bei Erregern, die wir in Krankenhäusern isolierten, verhinderte das CRISPR-System die Übertragung von Virulenzfaktoren. Damit könnte CRISPR auch einen alternativen Ansatz zur Bekämpfung von resistenten Krankheitserregern in Kliniken eröffnen.“

“Alternativ kann die besondere Förderung des neuen Signalweges bei nützlichen Bakterienstämmen dazu führen, dass Nutzorganismen gegen zerstörerische Viren-Angriffe resistent bleiben und nicht verändert werden. Dies könnte beispielsweise zu höherer mikrobieller Stabilität in der Produktion von Molkereiprodukten führen. “

Anfragen bitte an:

Dr. Emmanuelle Charpentier
The Laboratory for Molecular Infection Medicine Sweden (MIMS) and the
Umeå Centre for Microbial Research UCMR
Umeå University
90187 Umeå Sweden
emmanuelle.charpentier@mims.umu.se
http://www.mims.umu.se http://www.ucmr.umu.se
Originalpublikation:
Elitza Deltcheva, Krzysztof Chylinski, Cynthia M. Sharma, Karine Gonzales, Yanjie Chao, Zaid A. Pirzada, Maria R. Eckert, Jörg Vogel & Emmanuelle Charpentier; CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 31 March 2011 (doi:10.1038/nature09886).

Die schwedisch-deutsche Forschungs-Zusammenarbeit wurde durch den schwedischen Forschungsrat, die Deutsche Forschungsgemeinschaft, das deutsche Bundesministerium für Bildung und Forschung und die Europäische Union finanziert.

Das Labor für Molekulare Infektionsmedizin Schweden, MIMS, ist der schwedische Teil der nordischen EMBL-Partnerschaft für Molekulare Medizin. Die Erforschung der molekularen Mechanismen von Infektionen und die Entwicklung neuer antimikrobieller Strategien stehen im Fokus der Forschung. MIMS ist Teil des Forschungskonsortiums „Umeå Centre for Microbial Research UCMR. Weitere Information zum Labor: http://www.mims.umu.se.

Das Institut für Molekulare Infektionsbiologie (IMIB) ist eine interdisziplinäre Einrichtung der Medizinischen Fakultät der Universität Würzburg. Die Forschung konzentriert sich auf die Erreger von Infektionskrankheiten. Die Forschungsschwerpunkte liegen auf der Analyse molekularer Mechanismen der Genregulation in krankheitserregenden Bakterien, Parasiten und Pilzen, sowie Abwehrreaktionen von Wirten. http://www.infektionsforschung.uni-wuerzburg.de

Eva-Maria Diehl | idw
Weitere Informationen:
http://www.infektionsforschung.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie