Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien - Was Farben über Leben und Tod verraten

13.01.2009
Physikochemiker der Universität Jena entwickeln neues Verfahren zur Identifikation von Bakterien

Es wimmelt nur so vor winzigen Partikeln. Einige bewegen sich, andere nicht. Einige sind punktförmig, andere sehen wie kleine Stäbchen aus. Laien sehen beim Blick durch ein Mikroskop häufig nur ein undefinierbares Wirrwarr.

Für Mediziner oder Nahrungsmittelkontrolleure ist dagegen von höchster Bedeutung, die Partikel exakt zu bestimmen. "Oft spielt der Faktor Zeit dabei eine entscheidende Rolle", weiß Prof. Dr. Jürgen Popp von der Friedrich-Schiller-Universität Jena. Seine Arbeitsgruppe hat jetzt ein Verfahren entwickelt, mit dem Mikroorganismen schnell und zuverlässig identifiziert werden können. Ihre Ergebnisse haben sie vor kurzem in der Fachzeitschrift "Analytical Chemistry" veröffentlicht.

"In vielen Proben kommen neben biotischen Partikeln auch nicht-biotische wie Staub oder andere Verunreinigungen vor", so Popp. "Die können mit unserer Methode problemlos voneinander unterschieden werden." Durch Fluoreszenzanregung sei dies zwar schon möglich gewesen, jedoch habe sich das Verfahren in der Praxis mit Realproben eher als problematisch dargestellt.

Die Jenaer Arbeitsgruppe vom Institut für Physikalische Chemie verwendet die sogenannte Raman-Spektroskopie, bei der die Probe über einen Laser mit monochromatischem Licht bestrahlt wird. Anschließend können anhand des austretenden Frequenzspektrums, dem "Fingerabdruck" der Zellen, Aussagen über die Zusammensetzung der Probe gemacht werden. Die Wissenschaftler um Prof. Popp verwenden zusätzlich ein Mikroskop. "Diese Kombination macht eine räumliche Auflösung bis in den Einzel-Zell-Bereich möglich." Potenzielle Krankheitserreger können so bereits vor einer explosionsartigen Vermehrung einzeln identifiziert und frühzeitig bekämpft werden.

Dabei sind für Mediziner vornehmlich die lebenden Zellen von Bedeutung. "Eine tote Zelle stellt in der Regel keine unmittelbare Gefahr für den Organismus mehr dar", erläutert Prof. Popp das untergeordnete Interesse daran. "Wir haben eine Methode entwickelt, mit der die toten Zellen direkt als solche identifiziert werden können", so der Jenaer Chemiker. "Das spart wertvolle Analysezeit, denn diese Zellen müssen zunächst nicht weiter untersucht werden."

Die Wissenschaftler nutzen den grün fluoreszierenden Farbstoff SYTO 9 und das rot fluoreszierende Propidium-Iodid (PI), die beide in einem sogenannten Färbe-Kit vorhanden sind. Mit ihm werden die Proben behandelt. Das positiv geladene PI kann nur in tote Zellen eindringen, da es die Zellmembranen lebender Zellen wegen ihres positiven Zellpotenzials nicht passieren kann. Das neutrale SYTO 9, das in beide Zelltypen eindringen kann, wird durch das PI in den toten Zellen unterdrückt. Das hat zur Folge, dass die toten Zellen rot fluoreszieren, während die lebenden Bakterien grün leuchten. Da beide Farben nur in Verbindung mit DNA wirken, leuchten abiotische Partikel nicht. "Durch die schnelle Differenzierung können lebende Zellen zeitnah einer gezielten Analyse zugeführt werden", nennt Prof. Popp den Vorteil der neuen Methode.

Neben der Reduzierung der Messzeiten, die besonders in der Nahrungsmittelanalyse oder bei Blutuntersuchungen von Bedeutung ist, nutzen die Jenaer Wissenschaftler ihre Entwicklung zur Identifikation unbekannter Bakterienstämme. Dafür haben sie die Raman-Spektren verschiedener Arten untersucht und eine Datensammlung angelegt, die unter anderem wichtige Hinweise auf Alter, Nährmedium und Wachstumstemperatur enthält. "Wir hoffen, damit eine Basis für weitere Analysen zu schaffen", so der Professor für Physikalische Chemie der Universität Jena, der das Projekt in Kooperation mit einem Unternehmen bereits für die praktische Anwendung weiterentwickelt hat. "Das ist ein wichtiger Schritt in Richtung eines automatisierten Prozesses zur Identifizierung von Mikroorganismen."

Originalpublikation: Krause, M., Rösch, P., Radt, B., Popp, J.: Localizing and Identifying Living Bacteria in an Abiotic Environment by a Combination of Raman and Fluorescence Microscopy, Analytical Chemistry 2008, Vol. 80, Nr. 22

Kontakt:
Prof. Dr. Jürgen Popp
Institut für Physikalische Chemie der Friedrich-Schiller-Universität Jena
Lessingstr. 10, 07743 Jena
Tel.: 03641 / 948320
E-Mail: juergen.popp[at]uni-jena.de

Manuela Heberer | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie