Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien: „Fangarme“ ermöglichen DNA-Transfer

29.05.2015

Multiresistente pathogene Keime entstehen durch den Transfer von Resistenzgenen von einem Bakterium auf ein anderes. Forscherinnen der Goethe-Universität und des Max-Planck-Instituts für Biophysik haben nun bestätigt, dass Härchen-artige Strukturen, die wie Fangarme von den Bakterien ausgeworfen werden, für den DNA-Transfer verantwortlich sind.

Multiresistente pathogene Keime entstehen durch den Transfer von Resistenzgenen und Virulenzfaktoren von einem Bakterium auf ein anderes. Der wichtigste Mechanismus ist dabei der Transfer freier DNA ohne Zell-Zell-Kontakt, da dieser auch über die Artgrenzen hinweg erfolgt.


Typ IV Pilus-Maschinerie und ihreFunktion als DNA-Transporter: Schematisches Modell (A), Durchschnitt der Subtomogramme (B) und resultierende 3D Oberfläche (C) im geöffneten Zustand.

Averhoff

Wissenschaftlerinnen der Goethe-Universität und des Max-Planck-Instituts für Biophysik haben nun die Vermutung bestätigt, dass lange Härchen-artige Strukturen für den DNA-Transfer verantwortlich sind. Wie die Forscherinnen und Forscher in der aktuellen Ausgabe der Fachzeitschrift eLife berichten, konnten sie den Mechanismus mithilfe der Cryo-Tomographie auf molekularer Ebene aufklären.

Umfangreiche genetische und biochemische Analysen hatten in den letzten Jahren eine ungeahnte Komplexität des Vorgangs und der daran beteiligten Transportmaschinerie gezeigt. „Seit einiger Zeit kennen wir die beteiligten Proteine und haben auch Strukturen einzelner Komponenten, aber wir konnten nur vermuten, wo sie sich in der Zelle befinden und wie sie in der Bakterienmembran räumlich zueinander angeordnet sind“, erklärt Prof. Beate Averhoff von der Abteilung Molekulare Mikrobiologie & Bionergetik der Goethe Universität.

„All unsere Daten ließen nur eine Schlussfolgerung zu: dass an der DNA-Aufnahme Härchen der Bakterien beteiligt sind, die in der Cytoplasmamembran ihren Anfang nehmen und mittels hochkomplexer Portale nach außen in die Umgebung geleitet werden.“ Diese Härchen oder Pilus-artigen Strukturen durchspannen die gesamte Zellperipherie und reichen mit einer Länge, die das Vielfache einer Bakterie erreichen kann, ins Ökosystem.

Im Modelorganismus Thermus thermophilus hat Beate Averhoff zusammen mit Vicki Gold und Werner Kühlbrandt vom MPI für Biophysik die Struktur des Typ-IV-Pilus und des Portals dieses DNA-Transporters mithilfe der Cryo-Tomographie erstmals sichtbar gemacht. Diese neue und enorm leistungsfähige Methode wird in der Abteilung von Prof. Werner Kühlbrandt zur Aufklärung der Struktur makromolekularer Komplexe eingesetzt. Der detektierte DNA-Transporter durchspannt die gesamte Zellperipherie und ist circa 35 Nanometer lang und 15 Nanometer breit.

Für die Forscherinnen hochinteressant war die Beobachtung, dass der Komplex in zwei Konformationen vorliegt, einer geschlossenen und einer offenen. Dabei fanden sie zwei Portale, die sich entweder beide gleichzeitig öffnen oder schließen.

Die koordinierte Dynamik dieser zwei Portale ist entscheidend für den Durchtritt der Pili und somit für die Aufnahme freier DNA aus der Umgebung. Durch das Öffnen und Schließen der beiden Portale ändert sich auch die räumliche Struktur weiter entfernter Proteine, darunter die der Kraftwerke des DNA-Translokators, welche die Energie für den Transport der DNA bereitstellen.

Gelingt es, die Struktur des DNA-Translokators in der Zellmembran aufzuklären, wird es künftig möglich sein, die räumliche Anordnung der einzelnen Proteine, ihre Interaktion und ihre Rolle im DNA-Transfer zu analysieren. „Dann ist die Entwicklung von Hemmstoffen zur Inhibition des DNA-Transfers und damit zur Verhinderung der Ausbreitung von Resistenzgenen in greifbare Nähe gerückt“, prognostiziert Averhoff. Die Fragestellung sei außerdem relevant vor dem Hintergrund der Freisetzung gentechnisch veränderter Organismen.

Publikation:
Vicki A M Gold, Ralf Salzer, Beate Averhoff und Werner Ku?hlbrandt. Structure of a type IV pilus machinery in the open and closed state. eLife 2015;10.7554/eLife.07380

Informationen: Prof. Beate Averhoff, Molekulare Mikrobiologie und Bioenergetik, Institut für Molekulare Biowissenschaften, Campus Riedberg, (069)-798-29509; averhoff@bio.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto "Wissenschaft für die Gesellschaft" in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften."

Herausgeber: Die Präsidentin
Abteilung Marketing und Kommunikation,
60629 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main Telefon (069) 798 – 1 24 98, Telefax (069) 798 – 763 12531, E-Mail hardy@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Spot auf die Maschinerie des Lebens
23.08.2017 | Max-Planck-Institut für die Physik des Lichts, Erlangen

nachricht Immunsystem kann durch gezielte Manipulation des Zellstoffwechsels reguliert werden
23.08.2017 | Medical University of Vienna

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie