Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien: „Fangarme“ ermöglichen DNA-Transfer

29.05.2015

Multiresistente pathogene Keime entstehen durch den Transfer von Resistenzgenen von einem Bakterium auf ein anderes. Forscherinnen der Goethe-Universität und des Max-Planck-Instituts für Biophysik haben nun bestätigt, dass Härchen-artige Strukturen, die wie Fangarme von den Bakterien ausgeworfen werden, für den DNA-Transfer verantwortlich sind.

Multiresistente pathogene Keime entstehen durch den Transfer von Resistenzgenen und Virulenzfaktoren von einem Bakterium auf ein anderes. Der wichtigste Mechanismus ist dabei der Transfer freier DNA ohne Zell-Zell-Kontakt, da dieser auch über die Artgrenzen hinweg erfolgt.


Typ IV Pilus-Maschinerie und ihreFunktion als DNA-Transporter: Schematisches Modell (A), Durchschnitt der Subtomogramme (B) und resultierende 3D Oberfläche (C) im geöffneten Zustand.

Averhoff

Wissenschaftlerinnen der Goethe-Universität und des Max-Planck-Instituts für Biophysik haben nun die Vermutung bestätigt, dass lange Härchen-artige Strukturen für den DNA-Transfer verantwortlich sind. Wie die Forscherinnen und Forscher in der aktuellen Ausgabe der Fachzeitschrift eLife berichten, konnten sie den Mechanismus mithilfe der Cryo-Tomographie auf molekularer Ebene aufklären.

Umfangreiche genetische und biochemische Analysen hatten in den letzten Jahren eine ungeahnte Komplexität des Vorgangs und der daran beteiligten Transportmaschinerie gezeigt. „Seit einiger Zeit kennen wir die beteiligten Proteine und haben auch Strukturen einzelner Komponenten, aber wir konnten nur vermuten, wo sie sich in der Zelle befinden und wie sie in der Bakterienmembran räumlich zueinander angeordnet sind“, erklärt Prof. Beate Averhoff von der Abteilung Molekulare Mikrobiologie & Bionergetik der Goethe Universität.

„All unsere Daten ließen nur eine Schlussfolgerung zu: dass an der DNA-Aufnahme Härchen der Bakterien beteiligt sind, die in der Cytoplasmamembran ihren Anfang nehmen und mittels hochkomplexer Portale nach außen in die Umgebung geleitet werden.“ Diese Härchen oder Pilus-artigen Strukturen durchspannen die gesamte Zellperipherie und reichen mit einer Länge, die das Vielfache einer Bakterie erreichen kann, ins Ökosystem.

Im Modelorganismus Thermus thermophilus hat Beate Averhoff zusammen mit Vicki Gold und Werner Kühlbrandt vom MPI für Biophysik die Struktur des Typ-IV-Pilus und des Portals dieses DNA-Transporters mithilfe der Cryo-Tomographie erstmals sichtbar gemacht. Diese neue und enorm leistungsfähige Methode wird in der Abteilung von Prof. Werner Kühlbrandt zur Aufklärung der Struktur makromolekularer Komplexe eingesetzt. Der detektierte DNA-Transporter durchspannt die gesamte Zellperipherie und ist circa 35 Nanometer lang und 15 Nanometer breit.

Für die Forscherinnen hochinteressant war die Beobachtung, dass der Komplex in zwei Konformationen vorliegt, einer geschlossenen und einer offenen. Dabei fanden sie zwei Portale, die sich entweder beide gleichzeitig öffnen oder schließen.

Die koordinierte Dynamik dieser zwei Portale ist entscheidend für den Durchtritt der Pili und somit für die Aufnahme freier DNA aus der Umgebung. Durch das Öffnen und Schließen der beiden Portale ändert sich auch die räumliche Struktur weiter entfernter Proteine, darunter die der Kraftwerke des DNA-Translokators, welche die Energie für den Transport der DNA bereitstellen.

Gelingt es, die Struktur des DNA-Translokators in der Zellmembran aufzuklären, wird es künftig möglich sein, die räumliche Anordnung der einzelnen Proteine, ihre Interaktion und ihre Rolle im DNA-Transfer zu analysieren. „Dann ist die Entwicklung von Hemmstoffen zur Inhibition des DNA-Transfers und damit zur Verhinderung der Ausbreitung von Resistenzgenen in greifbare Nähe gerückt“, prognostiziert Averhoff. Die Fragestellung sei außerdem relevant vor dem Hintergrund der Freisetzung gentechnisch veränderter Organismen.

Publikation:
Vicki A M Gold, Ralf Salzer, Beate Averhoff und Werner Ku?hlbrandt. Structure of a type IV pilus machinery in the open and closed state. eLife 2015;10.7554/eLife.07380

Informationen: Prof. Beate Averhoff, Molekulare Mikrobiologie und Bioenergetik, Institut für Molekulare Biowissenschaften, Campus Riedberg, (069)-798-29509; averhoff@bio.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto "Wissenschaft für die Gesellschaft" in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften."

Herausgeber: Die Präsidentin
Abteilung Marketing und Kommunikation,
60629 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main Telefon (069) 798 – 1 24 98, Telefax (069) 798 – 763 12531, E-Mail hardy@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen
20.02.2017 | Universität zu Lübeck

nachricht Zellstoffwechsel begünstigt Tumorwachstum
20.02.2017 | Veterinärmedizinische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Welt der keramischen Werkstoffe - 4. März 2017

20.02.2017 | Veranstaltungen

Schwerstverletzungen verstehen und heilen

20.02.2017 | Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovative Antikörper für die Tumortherapie

20.02.2017 | Medizin Gesundheit

Multikristalline Siliciumsolarzelle mit 21,9 % Wirkungsgrad – Weltrekord zurück am Fraunhofer ISE

20.02.2017 | Energie und Elektrotechnik

Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen

20.02.2017 | Biowissenschaften Chemie