Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien: „Fangarme“ ermöglichen DNA-Transfer

29.05.2015

Multiresistente pathogene Keime entstehen durch den Transfer von Resistenzgenen von einem Bakterium auf ein anderes. Forscherinnen der Goethe-Universität und des Max-Planck-Instituts für Biophysik haben nun bestätigt, dass Härchen-artige Strukturen, die wie Fangarme von den Bakterien ausgeworfen werden, für den DNA-Transfer verantwortlich sind.

Multiresistente pathogene Keime entstehen durch den Transfer von Resistenzgenen und Virulenzfaktoren von einem Bakterium auf ein anderes. Der wichtigste Mechanismus ist dabei der Transfer freier DNA ohne Zell-Zell-Kontakt, da dieser auch über die Artgrenzen hinweg erfolgt.


Typ IV Pilus-Maschinerie und ihreFunktion als DNA-Transporter: Schematisches Modell (A), Durchschnitt der Subtomogramme (B) und resultierende 3D Oberfläche (C) im geöffneten Zustand.

Averhoff

Wissenschaftlerinnen der Goethe-Universität und des Max-Planck-Instituts für Biophysik haben nun die Vermutung bestätigt, dass lange Härchen-artige Strukturen für den DNA-Transfer verantwortlich sind. Wie die Forscherinnen und Forscher in der aktuellen Ausgabe der Fachzeitschrift eLife berichten, konnten sie den Mechanismus mithilfe der Cryo-Tomographie auf molekularer Ebene aufklären.

Umfangreiche genetische und biochemische Analysen hatten in den letzten Jahren eine ungeahnte Komplexität des Vorgangs und der daran beteiligten Transportmaschinerie gezeigt. „Seit einiger Zeit kennen wir die beteiligten Proteine und haben auch Strukturen einzelner Komponenten, aber wir konnten nur vermuten, wo sie sich in der Zelle befinden und wie sie in der Bakterienmembran räumlich zueinander angeordnet sind“, erklärt Prof. Beate Averhoff von der Abteilung Molekulare Mikrobiologie & Bionergetik der Goethe Universität.

„All unsere Daten ließen nur eine Schlussfolgerung zu: dass an der DNA-Aufnahme Härchen der Bakterien beteiligt sind, die in der Cytoplasmamembran ihren Anfang nehmen und mittels hochkomplexer Portale nach außen in die Umgebung geleitet werden.“ Diese Härchen oder Pilus-artigen Strukturen durchspannen die gesamte Zellperipherie und reichen mit einer Länge, die das Vielfache einer Bakterie erreichen kann, ins Ökosystem.

Im Modelorganismus Thermus thermophilus hat Beate Averhoff zusammen mit Vicki Gold und Werner Kühlbrandt vom MPI für Biophysik die Struktur des Typ-IV-Pilus und des Portals dieses DNA-Transporters mithilfe der Cryo-Tomographie erstmals sichtbar gemacht. Diese neue und enorm leistungsfähige Methode wird in der Abteilung von Prof. Werner Kühlbrandt zur Aufklärung der Struktur makromolekularer Komplexe eingesetzt. Der detektierte DNA-Transporter durchspannt die gesamte Zellperipherie und ist circa 35 Nanometer lang und 15 Nanometer breit.

Für die Forscherinnen hochinteressant war die Beobachtung, dass der Komplex in zwei Konformationen vorliegt, einer geschlossenen und einer offenen. Dabei fanden sie zwei Portale, die sich entweder beide gleichzeitig öffnen oder schließen.

Die koordinierte Dynamik dieser zwei Portale ist entscheidend für den Durchtritt der Pili und somit für die Aufnahme freier DNA aus der Umgebung. Durch das Öffnen und Schließen der beiden Portale ändert sich auch die räumliche Struktur weiter entfernter Proteine, darunter die der Kraftwerke des DNA-Translokators, welche die Energie für den Transport der DNA bereitstellen.

Gelingt es, die Struktur des DNA-Translokators in der Zellmembran aufzuklären, wird es künftig möglich sein, die räumliche Anordnung der einzelnen Proteine, ihre Interaktion und ihre Rolle im DNA-Transfer zu analysieren. „Dann ist die Entwicklung von Hemmstoffen zur Inhibition des DNA-Transfers und damit zur Verhinderung der Ausbreitung von Resistenzgenen in greifbare Nähe gerückt“, prognostiziert Averhoff. Die Fragestellung sei außerdem relevant vor dem Hintergrund der Freisetzung gentechnisch veränderter Organismen.

Publikation:
Vicki A M Gold, Ralf Salzer, Beate Averhoff und Werner Ku?hlbrandt. Structure of a type IV pilus machinery in the open and closed state. eLife 2015;10.7554/eLife.07380

Informationen: Prof. Beate Averhoff, Molekulare Mikrobiologie und Bioenergetik, Institut für Molekulare Biowissenschaften, Campus Riedberg, (069)-798-29509; averhoff@bio.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto "Wissenschaft für die Gesellschaft" in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften."

Herausgeber: Die Präsidentin
Abteilung Marketing und Kommunikation,
60629 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main Telefon (069) 798 – 1 24 98, Telefax (069) 798 – 763 12531, E-Mail hardy@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt
16.10.2017 | Leibniz-Institut für Neurobiologie

nachricht Keimfreie Bruteier: Neue Alternative zum gängigen Formaldehyd
16.10.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Kalte Moleküle auf Kollisionskurs

Mit einer neuen Kühlmethode gelingt Wissenschaftlern am MPQ die Beobachtung von Stößen in einem dichten Strahl aus kalten und langsamen dipolaren Molekülen.

Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht...

Im Focus: Astronomen entdecken ungewöhnliche spindelförmige Galaxien

Galaxien als majestätische, rotierende Sternscheiben? Nicht bei den spindelförmigen Galaxien, die von Athanasia Tsatsi (Max-Planck-Institut für Astronomie) und ihren Kollegen untersucht wurden. Mit Hilfe der CALIFA-Umfrage fanden die Astronomen heraus, dass diese schlanken Galaxien, die sich um ihre Längsachse drehen, weitaus häufiger sind als bisher angenommen. Mit den neuen Daten konnten die Astronomen außerdem ein Modell dafür entwickeln, wie die spindelförmigen Galaxien aus einer speziellen Art von Verschmelzung zweier Spiralgalaxien entstehen. Die Ergebnisse wurden in der Zeitschrift Astronomy & Astrophysics veröffentlicht.

Wenn die meisten Menschen an Galaxien denken, dürften sie an majestätische Spiralgalaxien wie die unserer Heimatgalaxie denken, der Milchstraße: Milliarden von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

bionection 2017 erstmals in Thüringen: Biotech-Spitzenforschung trifft in Jena auf Weltmarktführer

13.10.2017 | Veranstaltungen

Tagung „Energieeffiziente Abluftreinigung“ zeigt, wie man durch Luftreinhaltemaßnahmen profitieren kann

13.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle

16.10.2017 | Physik Astronomie

Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt

16.10.2017 | Biowissenschaften Chemie

Gewebe mit Hilfe von Stammzellen regenerieren

16.10.2017 | Förderungen Preise