Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien aktivieren ihren eigenen Killer

07.12.2017

Selektive Photothermische Therapie mit in situ erzeugten supramoleklaren Radikal-Anionen

Eine neue photothermische Therapie könnte helfen, Antibiotika-Resistenzen zu überwinden: Ein Wirkstoff wandelt eingestrahltes nahes Infrarot-Licht lokal in Wärme um, die Keime abtötet. Dazu muss dieser „Wandler“ aber erst aktiviert werden, wie chinesische Wissenschaftler in der Zeitschrift Angewandte Chemie erläutern: eine Aufgabe, die die anvisierten Bakterien dabei selber erledigen. Andere Bakterien-Typen können ihn dagegen nicht „anknipsen“ und bleiben unbehelligt.


Infrarotlicht in Wärme umgewandelt tötet Keime ab

(c) Wiley-VCH

Übertriebener und missbräuchlicher Einsatz von Antibiotika hat zu einer starken Verbreitung hochgefährlicher resistenter Keime geführt. Photothermische Therapien sind ein interessanter neuer Ansatz zur Überwindung von Resistenzen. Dabei wird die Temperatur durch Lichteinwirkung lokal erhöht, um die Proteine der Mikroben zu denaturieren und sie so abzutöten.

Dazu sind Substanzen notwendig, die als „Wandler“ das Licht effektiv in Wärme umwandeln. Bisherige photothermische Wandler binden unspezifisch über elektrostatische Wechselwirkungen an Bakterien. Eine selektive Inhibierung bestimmter Bakterien ist so nicht zu erreichen. Sie wäre wünschenswert, da der Großteil der Bakterien in unserem Körper harmlos, wenn nicht gar wichtig ist, wie einige unserer Darmbakterien.

Die Wissenschaftler um Jiang-Fei Xu und Xi Zhang von der Tsinghua University und der Chinese Academy of Sciences (Beijing, China) haben jetzt einen photothermischen Wandler entwickelt, der erst aktiv wird, wenn er von Bakterien „angeschaltet“ wurde. Und das können nur bestimmte Bakterien-Typen, nämlich sogenannte fakultativ anaerobe Bakterien.

Der neue Wandler ist ein Komplex aus drei Molekülen: Einem Perylen-Diimid-Derivat als stäbchenförmigem Mittelteil, dessen Enden beide im Hohlraum kürbisförmiger Makrocyclen (Cucurbituril) stecken. Die „Kürbisse“ verhindern, dass sich die Stäbchen unspezifisch in bakterielle Membranen einlagern und gleichzeitig, dass sie miteinander Stapel bilden und verklumpen.

Perylen-Diimide können durch Reagenzien zu Radikal-Anionen reduziert werden. Interessanterweise können fakultativ anaerobe Bakterien wie Escherichia coli das auch. Die Reduktion verändert die optischen Eigenschaften: Das Radikal-Anion absorbiert nun NIR-Licht und gibt die aufgenommene Energie in Form von Wärme wieder ab. In der Umgebung der Kolibakterien wird es sehr warm, sodass sie abgetötet werden.

Aerobe Bakterien wie Bacillus subtilis werden dagegen nicht überhitzt, da sie den Wandler nicht anschalten. Die Forscher vermuten, dass Hydrogenasen, enzymatische Protonen-Transporter, für die Reduktion und damit das „Einschalten“ verantwortlich sind. In größerer Menge kommen diese nur in der Membran anaerober und fakultativ anaerober Bakterien vor. Auf dieser Basis könnte auch eine Therapie entwickelt werden, die mikrobielle Balance, etwa der Darmflora, zu regulieren.

Angewandte Chemie: Presseinfo 48/2017

Autor: Xi Zhang, Tsinghua University (China), http://zhangxigroup.com/

Link zum Originalbeitrag: https://doi.org/10.1002/ange.201708971

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Karin J. Schmitz | Gesellschaft Deutscher Chemiker e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics