Automatisierte Tabakfarm produziert Impfstoffe

Der Engpass an Impfstoff während der Schweinegrippe 2009 zeigte: Die Produktion mit Hühnereiern ist ausgereift, aber sie dauert in einem weltweiten Notfall zu lange und liefert nicht ausreichend Impfstoff. Gefragt sind alternative Verfahren mit kürzeren Produktionszeiten und größerer Ausbeute, wie etwa die Produktion von Impfstoffen und Therapeutika in Pflanzen.

Molecular Farming, so der Fachausdruck für dieses Verfahren, ist einfach, schnell und sicher: Die für die Proteinbildung notwendigen genetischen Informationen werden mit Hilfe von Virenvektoren – diese sind für den Menschen ungefährlich – in die Pflanze eingeschleust. Hinzu kommt, dass Pflanzen eine ähnliche Proteinsynthese haben wie Menschen und auch komplexe Proteine produzieren können.

»Wir verwenden Tabakpflanzen, weil sich die Virenvektoren in ihnen gut vervielfältigen können. Zudem entsteht schnell viel Biomasse und damit auch eine größere Menge der gewünschten Proteine«, sagt Vidadi Yusibov vom Fraunhofer Center for Molecular Biotechnology CMB in Newark. Im Labor war schon bewiesen, dass das gut funktioniert. Doch lässt sich das Molecular Farming zur Massenproduktion hoch skalieren? Die ersten Hürden haben die Forscher schon genommen:
Sie entwickelten eine komplett automatisierte Pflanzenfabrik mit einer Zulassung nach GMP-Kriterien, den Godd Manufacturing-Process Richtlinien zur Qualitätssicherung in der Arzneimittelproduktion. Eine Grundvoraussetzung für die Produktion von Biopharmazeutika wie Impfstoffen oder Proteinen. Dafür erhalten zwei Fraunhofer-Forscher aus den USA, Prof. Dr. Andre Sharon vom Fraunhofer Center for Manufacturing Innovation CMI in Boston, Partner-Institut des Fraunhofer-Instituts für Produktionstechnologie IPT, und Prof. Dr. Vidadi Yusibov vom Fraunhofer CMB, Partner-Institut des Fraunhofer-Instituts für Molekularbiologie und Angewandte Oekologie IME, einen der diesjährigen Joseph-von-Fraun-hofer-Preise.

Pflanzen mit vorhersagbarer Qualität – jederzeit an jedem Ort

Ausschlaggebend war ein Auftrag der DARPA – der Defence Advanced Research Projects Agency – der US-Regierung, die nach Alternativen für die Impfstoff-Produktion suchte. »Die größte Herausforderung für uns als Ingenieure war es sicherlich, die biologischen Prozesse zu verstehen – und auch die Biologen mussten lernen, was aus Sicht der Ingenieure machbar ist. Doch gemeinsam gelang es uns, die automatisierte Pflanzenproduktionsanlage aufzubauen.
Wir haben jetzt Pflanzen, die zu jeder Zeit, an jedem Ort, immer wieder in der gleichen vorhersagbaren Qualität wachsen und Proteine herstellen – klingt schon verrückt«, erzählt Andre Sharon vom CMI. Sehr real sind die Lösungen: In Regal-Einsätzen mit Funktionen für Bewässerung und Nährstoffversorgung wachsen die Pflanzen nicht in Erde, sondern in Hydrokulturen aus Mineralwolle. Beleuchtung, Bewässerung und Versorgung mit Nährstoffen werden in den speziell gestalteten Wachstumsmodulen exakt dosiert und verteilt. Eigens entwickelte Roboter bringen die Pflanzen von Station zu Station – vom Einsetzen der winzigen Samen über die Vakuuminfiltration bis zur Ernte und Extraktion.

Vier Wochen wachsen die Pflanzen heran, dann wird der Virenvektor eingebracht – mittels Vakuuminfiltration. Dafür greift der Roboter einen Einsatz, dreht ihn und taucht die Tabakpflanzen kopfüber in Wasser. »In diesem Wasser ist der biologische Überträger, der die genetischen Informationen enthält. Diese sagen den Pflanzen, welches Protein sie produzieren sollen. Dann wird ein Vakuum erzeugt – sprich, wir ziehen die Luft ab – aus dem Wasser und aus den Pflanzen. Sobald man es abstellt, saugen die Pflanzen das Wasser samt dem Vektor ein. Das dauert nur wenige Sekunden«, erklärt Professor Sharon. Danach kommen die Pflanzen zurück ins Wachstumsregal. In etwa einer Woche haben sie die Proteine produziert. Nach der Ernte werden die Blätter voll automatisch in kleine Stücke geschnitten und homogenisiert. So entsteht ein Gemisch, aus dem die Proteine extrahiert werden. Endprodukt ist eine klare Flüssigkeit.

In der Pilotanlage können bis zu 300 Kilogramm Biomasse im Monat hergestellt werden, das entspricht in etwa 2,5 Millionen Impfstoffeinheiten.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer