Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auszeichnung und kostbare Rechenzeit für Prof. Dominik Marx' "virtuelles Labor"

06.08.2008
"John von Neumann Exzellenz-Projekt 2008" in der RUB-Chemie
Präbiotische Chemie im "Virtuellen Labor"

Wie ist wohl das erste Protein entstanden - lange bevor es Lebewesen gab, die Proteine aus einzelnen Bausteinen aktiv zusammenknüpfen?

Um diese Frage ranken sich viele Spekulationen; Prof. Dr. Dominik Marx und Mitarbeiter gehen ihr mittels Computersimulation im "virtuellen Labor" auf den Grund. Diese Arbeiten seines Lehrstuhls für Theoretische Chemie der Ruhr-Universität wurden jetzt vom John von Neumann-Institut für Computing am Forschungszentrum Jülich unter 140 Kandidaten als "John von Neumann Exzellenz-Projekt 2008" ausgewählt.

Das Projekt wurde aufgrund seiner ausgezeichneten Vorarbeiten, der hohen Bedeutung der zu erwartenden Erkenntnisse und der Qualität der eingesetzten Methoden ausgewählt. Mit dem Prädikat ist eine besonders hohe Zuteilung von Rechenzeit verbunden.

Proteine bilden sich spontan

Prof. Marx wird seine Berechnungen auf dem schnellsten deutschen Supercomputer JUGENE des Forschungszentrums Jülich durchführen können. Er "füttert" den Supercomputer mit den Eckdaten einer so genannten "Eisen-Schwefel-Welt", von der man annimmt, dass sie so vor Jahrmillionen einmal existiert haben könnte. Die Hypothese ist, dass an den Oberflächen von Eisen-Schwefel-Mineralien bei hoher Temperatur und hohem Druck des Wassers als Medium Peptide aus ihren einzelnen Bausteinen spontan entstanden sein könnten.

Allerdings ist es schwierig, solche Reaktionen bei mehreren hundert Grad und Bar kontrolliert experimentell durchzuführen und gleichzeitig die Auswirkungen dieser exotischen Reaktionsbedingungen zu messen. "Das funktioniert nur im virtuellen Labor", so Marx. "Mit modernsten Simulationsmethoden in Kombination mit den leistungsfähigsten Rechnern ist es möglich, diese Extrembedingungen nicht nur herzustellen, sondern auch Eins zu Eins mit normalen Reaktionsbedingungen zu vergleichen."

Rekordverdächtiger Rechenaufwand

Anhand bisheriger Berechnungen konnten die Theoretiker schon nachweisen, dass diese für die Biochemie doch unüblichen Reaktionsbedingungen die Bildung von Peptidbindungen beschleunigen. Der Aufwand einer solchen "ab initio"-Studie, die (fast) keinen experimentellen Input benötigt, ist allerdings exorbitant, denn es müssen viele einzelne Reaktionsschritte sowie deren Rückreaktionen unter verschiedenen Reaktionsbedingungen simuliert werden. Der Rechenaufwand ist rekordverdächtig und wird überhaupt erst durch ausgiebige Nutzung der Blue Gene Capability Rechner des John von Neumann-Institut für Computing in Jülich im Verbund mit dem hocheffizienten Programm "CPMD" möglich.

Weitere Informationen

Prof. Dr. Dominik Marx,
Lehrstuhl für Theoretische Chemieder Ruhr-Universität Bochum,
44780 Bochum, E-Mail: dominik.marx@theochem.rub.de,

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/
http://www.theochem.rub.de

Weitere Berichte zu: Computing Protein Reaktionsbedingungen Rechenzeit Supercomputer

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise