Aus zwei mach eins: Wie aus grünem Licht blaues wird

Photonen-Hochkonversion: Die Energieübertragung zwischen den Molekülen basiert auf einem Austausch von Elektronen (Dexter-Transfer) Abbildung: Michael Oldenburg

Metallorganische Gerüstverbindungen (MOFs – Metal Organic-Frameworks) sind hochgeordnete molekulare Systeme aus metallischen Knotenpunkten und organischen Streben. Am Institut für Funktionelle Grenzflächen (IFG) des KIT haben Forscher MOFs entwickelt, die schichtweise auf der Oberfläche von Substraten wachsen.

Diese SURMOFs (Surface Mounted Metal Organic Frameworks) lassen sich aus vielfältigen Materialien herstellen und mit verschiedenen Porengrößen und chemischen Funktionalitäten für ein breites Spektrum von Anwendungen maßschneidern, beispielsweise für Sensoren, Katalysatoren, Membranen, in der Medizintechnik oder als intelligente Speicher.

Ein weiterer wichtiger Anwendungsbereich liegt in der Optoelektronik, das heißt in Bauteilen, die Licht in elektrische Energie oder elektrische Energie in Licht umwandeln. Viele dieser Bauteile funktionieren auf der Basis von Halbleitern. „Die SURMOFs vereinen Vorteile organischer und anorganischer Halbleiter“, erklärt Professor Christof Wöll, der Leiter des IFG. „Sie verbinden chemische Vielfalt und Kristallinität und ermöglichen den Aufbau geordneter Heterostrukturen.“

In vielen optoelektronischen Bauteilen kontrolliert ein sogenannter Heteroübergang – eine Grenzschicht zwischen zwei unterschiedlichen Halbleitermaterialien – den Energietransfer zwischen den verschiedenen Anregungszuständen. Forscher des Instituts für Mikrostrukturtechnik (IMT) des KIT haben nun einen neuen Huckepack-SURMOF geschaffen, indem sie einen zweiten SURMOF auf einem ersten epitaktisch, das heißt schichtweise, aufwachsen lassen.

An diesem Heteroübergang gelang es, eine Photonen-Hochkonversion zur erreichen. Dabei werden zwei Photonen mit niedrigerer Energie in ein Photon mit höherer Energie umgewandelt, sozusagen verschmolzen. „So wird aus grünem Licht blaues Licht, das kurzwelliger und energiereicher ist. Sehr wichtig für die Photovoltaik“, erläutert Professor Bryce Richards, Leiter des IMT. Ihre Arbeit stellen die Wissenschaftler in „Advanced Materials“ vor, einer der weltweit führenden Zeitschriften zur Materialforschung.

Der von den Karlsruher Forschern gezeigte Prozess der Photonen-Hochkonversion basiert auf der sogenannten Triplett-Triplett-Annihilierung. Zwei Moleküle sind involviert: ein Sensibilisatormolekül, das Photonen, das heißt Lichtteilchen, absorbiert und Triplett-Anregungszustände erzeugt, und ein Emitter-Molekül, das diese Triplett-Anregungszustände übernimmt und über Triplett-Triplett-Annihilierung ein Photon aussendet, das energiereicher ist als die ursprünglich absorbierten Photonen.

„Die Herausforderung besteht darin, diesen Prozess möglichst effizient zu gestalten“, erklärt Dr. Ian Howard, Nachwuchsgruppenleiter am IMT. „Wir haben die Sensibilisator- und Emitterschichten so aufeinander abgestimmt, dass wir eine niedrige Konversionsschwelle und zugleich eine hohe Lichtausbeute erreicht haben.“

Da der Triplett-Transfer auf einem Austausch von Elektronen beruht, schließt der gezeigte Prozess der Photonen-Hochkonversion einen Elektronentransfer über die Grenzschicht zwischen den beiden SURMOFs ein. Dies legt nahe, dass sich SURMOF-SURMOF-Heteroübergänge für viele optoelektronische Anwendungen eignen, beispielsweise Leuchtdioden und Solarzellen. Heutige Solarzellen sind in ihrem Wirkungsgrad unter anderem dadurch begrenzt, dass sie nur Photonen mit einer bestimmten Mindestenergie zur Stromerzeugung nutzen können. Eine Hochkonversion könnte Photovoltaik deutlich effizienter machen.

Michael Oldenburg, Andrey Turshatov, Dmitry Busko, Stephanie Wollgarten, Michael Adams, Nicolò Baroni, Alexander Welle, Engelbert Redel, Christof Wöll, Bryce S. Richards, and Ian A. Howard: Photon Upconversion at Crystalline Organic-Organic Heterojunctions. Advanced Materials, 2016. DOI: 10.1002/adma.201601718

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: www.kit.edu

Media Contact

Monika Landgraf Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer