Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Augenbewegungen im mathematischen Modell

06.10.2008
Wie wir Objekten mit den Augen folgen

Wenn wir einem sich bewegenden Objekt mit den Augen folgen, berechnet das Gehirn dazu die Geschwindigkeit des Objektes und passt die Augenbewegung dementsprechend an. Das allein ist schon eine enorme Leistung, aber das Gehirn kann noch mehr. Zieht ein Auto an uns vorbei, wird es sicherlich schneller beschleunigen oder bremsen, als ein Fußgänger.

Dementsprechend reagiert auch die Steuerung der Augenbewegung auf Geschwindigkeitsänderungen von schnellen Objekten sensitiver, als auf die von langsamen Objekten. "Gain Control" (Verstärkungskontrolle) heißt dieses Phänomen im Fachjargon. Wo im Gehirn die Verstärkungskontrolle berechnet wird und welche neuronalen Verschaltungen dem zu Grunde liegen, haben Wissenschaftler um Ulrich Nuding, Stefan Glasauer und Ulrich Büttner vom Bernstein Zentrum für Computational Neuroscience und der Ludwig-Maximilians-Universität München in einem mathematischen Modell postuliert und experimentell überprüft. Ihre Ergebnisse sind auch für die Diagnose von Augenbewegungsstörungen relevant.

Sowohl aus Verhaltensexperimenten am Menschen als auch aus neurophysiologischen Studien ist schon einiges über die Steuerung der Augenbewegung bekannt. Zum Beispiel weiß man, dass verschiedene kortikale Hirnregionen bei der Entstehung der Augenfolgebewegung beteiligt sind: die Area MST im parieto-temporalen Kortex und die frontalen Augenfelder (FEFs). Dabei spiegeln Nervenzellen in der Area MST vor allem die Geschwindigkeit der Augen- oder Zielbewegung wider, wohingegen Zellen die FEFs vor allem auf Änderungen der Geschwindigkeit reagieren. Ziel der Münchner Wissenschaftler war es, diese Erkenntnisse in einem Computermodell, das die Augenbewegungssteuerung erklärt, zusammenzuführen.

Das Modell der Wissenschaftler simuliert die wichtigsten Verschaltungen, die zur Steuerung der Augenfolgebewegung nötig sind. In der Area MST wird die Geschwindigkeit des Zielobjektes berechnet, um diese mit der momentanen Augengeschwindigkeit zu vergleichen und daran anzupassen. Die FEFs sind der postulierte Ort der Verstärkungskontrolle: hier wird die Sensitivität der Augenbewegung für Geschwindigkeitsänderungen festgelegt. Je schneller sich ein Objekt bewegt, desto größer die Anpassungsfähigkeit. "Damit ist es uns erstmals gelungen, zu erklären, wofür die parallelen anatomischen Pfade in der Verarbeitung gut sind", sagt Glasauer.

Zur Überprüfung des Modells ließen die Wissenschaftler zusammen mit Kollegen am University College London Probanden einem Punkt auf dem Bildschirm mit den Augen folgen. Die Aktivität der FEFs wurde dabei kurzzeitig durch Transkraniale Magnetische Stimulation gestört, eine Technologie, mit der gezielt bestimmte Gehirnregionen für wenige Sekunden beeinflusst werden können. Diese Experimente bestätigten die Vorhersagen des Modells. So lange sich das beobachtete Objekt mit konstanter Geschwindigkeit bewegte, wirkte sich eine Störung der FEFs kaum auf die Augenbewegungssteuerung aus. Die Sensitivität der Augenbewegung für Geschwindigkeitsänderungen aber nahm bei gestörter FEF bei höheren Geschwindigkeiten nicht ausreichend zu. Demnach wird in den FEFs die Verstärkungskontrolle in Abhängigkeit von der Geschwindigkeit des Auges oder des Ziels ermittelt. Diese Sensitivitätsänderung weist interessante Parallelen zur visuellen Aufmerksamkeitssteuerung auf, bei der ebenfalls die FEFs eine wichtige Rolle spielen, und kann daher als Aufmerksamkeitsmechanismus im Augenfolgesystem betrachtet werden.

Originalveröffentlichungen:
Nuding, U., Kalla, R., Muggleton, N.G., Büttner, U., Walsh, V. & Glasauer, S. TMS evidence for smooth pursuit gain control by the frontal eye fields. Cerebral Cortex. 2008, online publiziert am 1. Oktober 2008.

doi:10.1093/cercor/bhn162

Nuding, U., Ono, S., Mustari, M.J., Büttner, U. & Glasauer, S. A theory of the dual pathways for smooth pursuit based on dynamic gain control. J Neurophysiol. 2008 Jun;99(6):2798-808.

doi:10.1152/jn.90237.2008

Kontakt:
PD Dr. Stefan Glasauer
Zentrum für Sensomotorik
Neurologische Klinik und Poliklinik
Ludwig-Maximilians-Universität München
Marchioninistraße 23
81377 München
Tel: (49) 89/7095 4839
Email: sglasauer@nefo.med.uni-muenchen.de

Dr. Katrin Weigmann | idw
Weitere Informationen:
http://www.nefo.med.uni-muenchen.de/~sglasauer/
http://www.bccn-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie