Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Augen auf beim Beutefang

17.05.2013
Forscher analysieren Jagdverhalten von Fischlarven in der virtuellen Realität

Bewegte Objekte erhöhen die Aufmerksamkeit. Videowände an öffentlichen Plätzen und animierte Werbebanner im Internet machen sich das zunutze. Auch für die meisten Tierarten spielen bewegte Objekte bei der Verarbeitung von Sinneseindrücken im Gehirn eine große Rolle, da sie oft eine willkommene Beute oder eine drohende Gefahr darstellen. Dies gilt auch für die Larve des Zebrabärblings, die auf Bewegungen ihrer Beute reagieren muss.


Die teilweise eingebettete Larve betrachtet virtuelle Beute auf einer kleinen Leinwand. Sobald sie gerichtet schwimmt, wird eine Drehbewegung durch das Verschieben der projizierten Umgebung simuliert.
© MPI für medizinische Forschung/Trivedi; Bollmann


(A) Ein mit einem grün fluoreszierenden Protein sichtbar gemachter Zelltyp im Tektum hebt die Schichtung dieses Sehzentrums hervor. (B) Derselbe Zelltyp wie in (A), aber hier mit einem Kalzium-empfindlichen Protein gefärbt.
© Gabriel; Bollmann; modifiziert nach: Neuron 76, 1147-1160 (2012)

Wissenschaftler des Max-Planck-Instituts für medizinische Forschung in Heidelberg haben untersucht, wie das Gehirn auf die Informationen aus dem Sehsystem zur Ausführung schneller Bewegungen zurückgreift. Demnach registriert das Sehsystem der Tiere die Bewegungen der Beute, so dass das Gehirn die Tiere mit gezielten Schwimmstößen innerhalb von Millisekunden neu ausrichten kann. Zwei bislang unbekannte Nervenzelltypen im Mittelhirn sind an der Verarbeitung von Bewegungsreizen beteiligt.

Die Larven des Zebrabärblings besitzen ein Sehystem, das dem anderer Wirbeltiere prinzipiell gleicht. Außerdem ist ihr Erbgut entschlüsselt, sie sind klein und ihre Haut ist durchsichtig und so für Fluoreszenz-Mikroskope gut zu durchdringen. Die Tiere eignen sich deshalb gut zur Untersuchung des Bewegungssehens. Die Tiere besitzen ein ausgeprägtes Beutefangverhalten. Mit Hilfe ihres feinen Sehsystems verfolgen sie und fangen kleine Wimpertierchen. In wenigen Sekunden führen sie dazu eine Reihe von Schwimmmanövern aus, während der sie die Richtung und Entfernung des Beutetiers immer wieder neu überprüfen, um die weitere Bewegungsabfolge entsprechend anzupassen. Das Gehirn der Larve muss daher in kürzester Zeit visuelle Informationen filtern und bewerten, um geeignete Bewegungsmuster abrufen zu können.

Forscher um Johann Bollmann am Max-Planck-Institut für medizinische Forschung haben zunächst mit Hochgeschwindigkeits-Videoaufnahmen den natürlichen Ablauf des Beutefangs der Larven unter verschiedenen Startbedingungen untersucht. Es zeigte sich, dass die Larve ein elementares Bewegungsmuster wiederholt ausführen und mit einer Richtungskomponente versehen kann, die den Jäger mit jedem Schwimmstoß in Richtung Beute neu ausrichtet. Dafür müssen die Larven Sehinformationen in wenigen hundert Millisekunden verarbeiten.
In einem zweiten Schritt haben die Wissenschaftler die natürliche Schwimmumgebung in einem neuartigen Versuchsaufbau als „virtuelle Realität“ nachgebildet, in der Larven typische Beutefangsequenzen ausführen, ohne sich tatsächlich fortzubewegen. Die virtuelle Beute besteht aus computer-gesteuerten Bildern, die auf eine kleine Leinwand projiziert werden. So lässt sich die Rolle von Bewegungsparametern wie zum Beispiel Größe und Geschwindigkeit des „Beutetiers“ auf die visuelle Reizverarbeitung der Tiere quantitativ untersuchen.

In der „virtuellen Realität“ können die Wissenschaftler testen, wie die Fischlarven auf unerwartete Verschiebungen der Beute nach einem Schwimmstoß reagieren. „Wenn wir unseren Blick durch Augen- und Kopfbewegungen auf ein Zielobjekt richten, erwarten wir, dass das Objekt an einer zentralen Position in unserem Gesichtsfeld erscheint. Bei den Larven verlangsamen nur leichte Abweichungen von der Zielposition oder Verzögerungen beim Wiedererscheinen des virtuellen Beutetiers die Reaktionszeiten. Vermutlich benötigt das Gehirn der Larven bei unerwartetem visuellem Feedback zusätzliche Rechenzeit für die Berechnung des nächsten Schwimmstoßes“, erklärt Johann Bollmann vom Heidelberger Max-Planck-Institut.

Darüber hinaus können die Forscher mit Hilfe von Fluoreszenz-Mikroskopen die Aktivität von Nervenzellgruppen im Larvenhirn untersuchen, die die zielgerichteten Beutefangbewegungen vermutlich steuern. In einer früheren Studie haben sie bereits Zelltypen entdeckt, die spezifisch auf entgegengesetzte Bewegungsrichtungen reagieren. Diese bislang unbekannten Nervenzellen im Mittelhirndach (Tektum) unterscheiden sich in ihrer Richtungsempfindlichkeit und auch in der Struktur ihrer feinen Verästelungen. „Offenbar werden verschiedene Bewegungsrichtungen in unterschiedlichen Schichten des Tektums verarbeitet, denn die dendritischen Verzweigungen dieser Zellklassen liegen räumlich voneinander getrennt“, so Bollmann.

Ansprechpartner

Dr. Johann H. Bollmann
Max-Planck-Institut für medizinische Forschung, Heidelberg
Telefon: +49 6221 486-282
E-Mail: johann.bollmann@­mpimf-heidelberg.mpg.de
Dr. John Wray
Max-Planck-Institut für medizinische Forschung, Heidelberg
Telefon: +49 6221 486-277
Fax: +49 6221 486-351
E-Mail: wray@­mpimf-heidelberg.mpg.de
Originalpublikationen
Trivedi, C. A.; Bollmann, J. H.
Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

Frontiers in Neural Circuits 7, 86 (2013)

Gabriel, J. P.; Trivedi, C. A.; Maurer, C. M.; Ryu, S.; Bollmann, J. H.
Layer-specific targeting of direction-selective neurons in the zebrafish optic tectum

Neuron 76, 1147-1160 (2012)

Dr. Johann H. Bollmann | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7253745/Fischlarven-Beutefang

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der Suche nach Universal-Grippeimpfstoffen – Neuraminidase unterschätzt?
21.06.2018 | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

nachricht Organische Kristalle mit Twist und Selbstreparatur
21.06.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der “Stein von Rosetta” für aktive Galaxienkerne entschlüsselt

21.06.2018 | Physik Astronomie

Schneller und sicherer Fliegen

21.06.2018 | Informationstechnologie

Innovative Handprothesensteuerung besteht Alltagstest

21.06.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics