Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Auge für Stammzellen

05.12.2011
Stammzellen sind in der Lage, aus nur einer Zelle Nachkommen mit jeweils unterschiedlichen Spezialisierungen zu generieren. Das belegen Untersuchungen Heidelberger Biologen am Modellorganismus des Medaka-Fisches.

Zum Einsatz kam dabei eine dauerhafte genetische Zellmarkierung in der adulten Fischnetzhaut. Dabei konnten die Wissenschaftler um Prof. Dr. Joachim Wittbrodt und Dr. Lázaro Centanin vom Centre for Organismal Studies der Universität Heidelberg zeigen, dass alle retinalen Stammzellen Universalisten und Ursprung sämtlicher in der Retina vorkommenden Zelltypen sind. Die Forschungsergebnisse wurden in der Fachzeitschrift „Cell Stem Cell“ veröffentlicht.


Durch Einzelzelltransplantation aus vier verschiedenen genetisch markierten Fischlinien (rechts) wurde eine Retina mit mehreren, verschieden markierten Arched Continuous Stripes (ArCoS) erzeugt. Die konzentrischen Schichten in jedem einzelnen ArCoS stellen alle verschiedenen Zelltypen der Retina dar. Zur Orientierung: Das Fischauge wird von der Seite betrachtet, und die weiße runde Struktur in der Mitte ist die Linse.
Abbildung: Centre for Organismal Studies

Stammzellen helfen dem Körper, zu wachsen oder defekte Bereiche zu regenerieren. Diese universelle Antwort auf unterschiedliche Probleme im erwachsenen Organismus, selbst im Gehirn, wird derzeit weltweit intensiv erforscht. Eine Schlüsselfrage blieb dabei bislang offen: Handelt es sich bei der „Einsatztruppe“ der Stammzellen um eine Gruppe von Spezialisten oder um individuelle Universalisten? In anderen Worten: Wird für jeden zu reparierenden Zelltyp ein spezieller Typ von Stammzellen benötigt oder kann eine einzige Stammzelle Nachkommen generieren, die in ihrer jeweiligen Umgebung alle Probleme beseitigen?

Um diese Frage beantworten zu können, haben die Heidelberger Wissenschaftler eine permanente genetische Zellmarkierung mit Einzelzelltransplantationen am Modellorganismus des Medaka-Fisches kombiniert. So konnte die Arbeitsgruppe unter der Leitung von Prof. Wittbrodt einzelne Stammzellen in der Netzhaut, der Retina, und damit auch alle ihre Nachkommen in einem kompletten Stammbaum markieren. Auf diese Weise war es möglich, das Verhalten von Stammzellen in ihrer „natürlichen“ Umgebung zu studieren, der wachsenden Fisch-Retina. Die Untersuchungsergebnisse belegen, dass die retinalen Stammzellen multipotent sind und aus ihnen sämtliche in der Retina vorkommenden Zelltypen hervorgehen.

Dies zeigt sich experimentell in der Ausbildung von sogenannten Arched Continuos Stripes (ArCoS). Dabei handelt es sich um Streifen, die die Retina durchziehen, alle Zelltypen umfassen und jeweils von einer Stammzelle ausgehen. „Interessanterweise sind damit verschiedene Zelltypen innerhalb eines ArCoS näher miteinander verwandt als benachbarte Zellen eines Zelltyps”, sagt Lázaro Centanin, der als Postdoktorand der Arbeitsgruppe von Prof. Wittbrodt angehört.

Die Forschungsergebnisse legen dabei nahe, dass das Wachstum durch die Kontrolle der Stammzellvermehrung reguliert wird, während die Differenzierung in verschiedene Zelltypen als intrinsisches Programm abläuft. „Das ist so, als ob ein Haus von einem universellen Handwerker aufgebaut wird, der mauert, verputzt, installiert und auch das Dach deckt, und zwar alles gleichzeitig, weil der Handwerker in der Lage ist, sich zu teilen“, sagt Joachim Wittbrodt, der Direktor des Centre for Organismal Studies an der Universität Heidelberg ist und zugleich das Institut für Toxikologie und Genetik am Karlsruher Institut für Technologie (KIT) leitet.

Die Wissenschaftler konnten darüber hinaus aufzeigen, dass im selben Organ – der Retina des Fisches – neben den multipotenten retinalen Stammzellen eine zweite Klasse von Stammzellen existiert. Dies sind die Stammzellen der Pigmentschicht. Nach Angaben von Prof. Wittbrodt korreliert das Wachstumsverhalten dieser Zellen mit dem der retinalen Stammzellen, die Pigmentstammzellen haben jedoch nur ein begrenztes Potential und bringen lediglich einen Zelltyp hervor.

Neben der Bedeutung für die Grundlagenforschung zum Wachstum und der Regeneration des Auges hat insbesondere die angewandte Methodik der Heidelberger Forschungsarbeiten großes Potential für weitere Studien. Die genetische Markierung im Auge des Medaka-Fisches, das lebenslang in räumlich-zeitlich eng koordinierter Folge wächst, soll Einblicke in das Verhalten und die entscheidenden Entwicklungsprozesse von einzelnen Stammzellen und ihrer Nachkommen im intakten Organ ermöglichen. Darauf aufbauend wird die Gruppe um Prof. Wittbrodt nun die regulatorischen Mechanismen in Stammzellen in vivo und in ihrer natürlichen Umgebung weiter untersuchen.

Informationen im Internet sind unter http://www.cos.uni-heidelberg.de/index.php/j.wittbrodt?l=_e abrufbar.

Originalpublikation:
L. Centanin, B. Hoeckendorf, J. Wittbrodt: Fate Restriction and Multipotency in Retinal Stem Cells. Cell Stem Cell (2011), doi: 10.1016/j.stem.2011.11.004
Kontakt:
Prof. Dr. Joachim Wittbrodt
Universität Heidelberg – Centre for Organismal Studies
KIT – Institut für Toxikologie und Genetik
Telefon (06221) 54-6499 jochen.wittbrodt@cos.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.cos.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Live-Verfolgung in der Zelle: Biologische Fussfessel für Proteine
19.06.2018 | Universität Basel

nachricht Tag it EASI - neue Methode zur genauen Proteinbestimmung
19.06.2018 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen

19.06.2018 | Physik Astronomie

Automatisierung und Produktionstechnik – Wandlungsfähig – Präzise – Digital

19.06.2018 | Messenachrichten

Überdosis Calcium

19.06.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics