Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aufnahmemechanismus für Zytostatika entdeckt

03.11.2015

Wie kommt ein Zytostatikum wie Cisplatin oder Carboplatin eigentlich in die Zelle? Wissenschaftler am Max-Delbrück-Centrum für Molekulare Medizin (MDC) und Leibniz-Institut für Molekulare Pharmakologie (FMP) in Berlin konnten nun in Zusammenarbeit mit einer holländischen Gruppe zeigen, dass der volumenregulierte Anionen-Kanal VRAC zu 50 Prozent für die Wirkstoffaufnahme verantwortlich ist. Ist eine der VRAC-Untereinheiten LRRC8A oder LRRC8D herunterreguliert, können Zellen wesentlich weniger Krebsmittel aufnehmen. Unabhängig davon ist auch der programmierte Zelltod, die Apoptose, empfindlich gestört, wenn LRRC8A fehlt.

Vor gut anderthalb Jahren haben Forscher am Max-Delbrück-Centrum für Molekulare Medizin (MDC) und Leibniz-Institut für Molekulare Pharmakologie (FMP) die molekulare Identität von VRAC entdeckt. Bei VRAC handelt es sich um einen Volumen-regulierten Anionen-Kanal, der negativ geladene Ionen (Anionen) und Aminosäuren in die Zelle hinein- und wieder herauslässt. VRAC, der von dem Protein LRRC8A und mindestens einem Verwandten gebildet wird, soll auch bei der Zellteilung und bei Krebs eine Rolle spielen.


Die Chemotherapeutika Cisplatin und Carboplatin sowie der proapoptotische Naturstoff Staurosporin gelangen in kleinen Mengen durch passive Diffusion über die Plasmamembran in die Zelle. Die Platin-basierten Wirkstoffe induzieren DNA-Schäden, die zu nicht-apoptotischem Zelltod und - in geringerem Umfang - zu Apoptose führen; haben aber auch eine mechanistisch bisher schlecht verstandene direkte proapoptotische Wirkung. VRACs werden wiederum durch proapoptitische Stimuli geöffnet. Durch LRRC8A und LRRC8D gebildete Kanäle transportieren hauptsächlich zelleigene Osmolyte wie Taurin, dienen aber auch als zusätzlicher Weg für die Aufnahme der Platin-basierten Wirkstoffe, aber nicht für das größere Staurosporin. Cis- und Carboplatin befördern somit ihre eigene Aufnahme in die Zelle über die Aktivierung von VRACs. Abbildung: Thomas Jentsch, FMP/MDC.

VRAC entscheidend für die Wirkstoffaufnahme

Wie bedeutsam VRAC gerade für Krebserkrankungen ist, konnten die Forscher in einer anschließenden Studie gemeinsam mit niederländischen Kollegen zeigen. An Zelllinien wurde untersucht, welche Rolle VRAC und seine Untereinheiten beim Transport von Cisplatin und Carboplatin in die Zelle spielen. Das Ergebnis hat die Forscher selbst überrascht:

VRAC oder vielmehr seine Bausteinproteine LRRC8A und LRRC8D sind zu 50 Prozent für den Aufnahmemechanismus der beiden weit verbreiteten Zytostatika verantwortlich. Anders ausgedrückt: Ohne diese beiden Untereinheiten kommt nur noch wenig Wirkstoff in die Zelle hinein. Aus Sicht der Forscher lassen sich damit Therapieresistenzen ein Stück weit erklären.

In ihren Experimenten hatte die Arbeitsgruppe von Thomas Jentsch die Anionen-Kanal bildenden Proteine nacheinander ausgeschaltet. Waren LRRC8A und LRRC8D an der Reihe, konnten die Zellen kaum noch Krebsmittel aufnehmen. „Es gibt zwar schon seit Langem eine Hypothese, dass VRAC bei der Apoptose eine wesentliche Rolle spielt. Aber dass das Druckventil auch als Aufnahmemechanismus für Zytostatika dient, war eine echte Überraschung“, sagt Thomas Jentsch.

Gestörte Apoptose verstärkt Therapieresistenz

Die Hypothese zur Apoptose konnte in der Studie ebenfalls bestätigt werden. War das für VRAC lebenswichtige Protein LRRC8A außer Gefecht gesetzt, funktionierte der natürliche Zelltod nicht mehr richtig.

Den Forschern zufolge ist das apoptotische Geschehen völlig unabhängig von dem Aufnahmemechanismus zu sehen. Jentsch spricht von einem doppelten Mechanismus. „Die Unterdrückung der Apoptose liegt vermutlich daran, dass bei Fehlen des volumen-regulierenden VRAC die beim programmierten Zelltod beobachtete Zellschrumpfung nicht mehr funktioniert. Dies hat mit dem Mechanismus der Medikamentenaufnahme nichts zu tun“, betont der Berliner Ionenkanalforscher.

Der nun neu entdeckte Aufnahmemechanismus konnte in der Studie sogar klinisch untermauert werden. Forscher um Sven Rottenberg vom Krebsforschungszentrum Amsterdam hatten in einem Genom-weiten Screen auf zelluläre Zytostatikaresistenz ebenfalls LRRC8D als relevantes Gen identifiziert und die genetischen Daten von Eierstockkrebspatientinnen, die mit Cisplatin oder Carboplatin behandelt worden waren, mit der Überlebenszeit verglichen. Die Tumordatenbankanalyse zeigte: Je weniger LRRC8D im Tumor exprimiert war, desto kürzer überlebten die Frauen.

Ergebnisse mit klinischer Relevanz

Begünstigt das Fehlen des VRAC-Proteins also Therapieresistenzen? „Die Daten sprechen dafür, dass LRRC8A und LRRC8D auch klinisch relevante Resistenzgene sind, wobei der Befund aber noch durch prospektive Studien erhärtet werden muss“, sagt Grundlagenforscher Jentsch. Und was dann? Rein theoretisch könne man vielleicht Aktivatoren finden, um das angeschlagene Druckventil wieder zu mobilisieren, meint Jentsch. In der Screening-Unit am FMP werde bereits danach gefahndet.

Neben den beiden klinisch relevanten Mechanismen förderte die Studie auch noch einen bislang unbekannten physiologischen Mechanismus zu Tage. Demnach ist die VRAC-Untereinheit LRRC8D immens wichtig für den Transport der Aminosäure Taurin, die eine wichtige Rolle als organischer Osmolyt bei der Volumenregulation spielt, aber auch wichtige Rezeptoren im Gehirn stimuliert.

Durch die Ausschaltung von LRRC8D wird es nun möglich sein, gezielt physiologische und pathologische Rollen der Taurin-Freisetzung durch VRAC zu untersuchen. Insgesamt hat die Studie einmal mehr bewiesen, wie schnell Grundlagenforschung zu klinisch bedeutsamen Ergebnissen führen kann.
Die Studie mit dem Originaltitel “Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs”, ist soeben im EMBO Journal erschienen. http://emboj.embopress.org/content/early/2015/10/30/embj.201592409

Prof. Thomas J. Jentsch
Leibniz-Institut für Molekulare Pharmakologie (FMP), Max-Delbrück-Centrum für Molekulare Medizin (MDC)
Robert-Roessle-Strasse 10
D-13125 Berlin

Tel.: +49-30-9406-2961 oder -2975
E-Mail: Jentsch@fmp-berlin.de
Internet: www.fmp-berlin.de/jentsch.html

Presse:
Silke Oßwald (FMP)
Tel.: +49-30-94793-104
E-Mail: osswald@fmp-berlin.de

Das Leibniz-Institut für Molekulare Pharmakologie (FMP) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Weitere Informationen:

http://www.fmp-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise