Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aufgerüstete Immunzellen sollen Krebszellen wirksam bekämpfen

15.12.2010
Ausgestattet mit künstlichen Erkennungssystemen sollen Immunzellen an Schlagkraft im Kampf gegen Krebs gewinnen.

Die Arbeitsgruppe um Niels Schaft und Jan Dörrie an der Hautklinik Erlangen hat dafür eine raffinierte Methode entwickelt: Nicht die künstlichen Erkennungssysteme selbst, sondern deren Bauplan, die sogenannte mRNA, schleusen sie in die T-Zellen des Immunsystems ein.

Bislang erproben die Forscher die Methode noch an Modellsystemen. Ziel ist jedoch die klinische Anwendung. In einem von der Wilhelm Sander-Stiftung geförderten Projekt optimieren sie dafür den Bauplan des künstlichen Krebs-Erkennungssystems.

Das Immunsystem schützt unseren Körper vor verschiedensten schädlichen Einflüssen, wie Bakterien, Viren und Parasiten. Unter bestimmten günstigen Umständen können auch Tumorzellen von Zellen des Immunsystems, den sogenannten T-Zellen, erkannt und beseitigt werden. Leider geschieht dies nur in wenigen Fällen. Da sie sich nur gering von gesundem Gewebe unterscheiden, können die Immunzellen die Tumorzellen häufig nicht als fremd, und damit als feindlich erkennen. Die Erlanger Forscher wollen diesen Prozess deutlich verbessern. Sie planen die Immunzellen der Patienten mit geeigneten Erkennungssystemen, den sogenannten Rezeptoren, auszustatten.

Diese künstlichen Rezeptoren sind an der Oberfläche der Zelle verankert. Sie bestehen aus zwei Untereinheiten. Die eine Untereinheit vermittelt die Erkennung der Krebszellen, die andere leitet ein Signal in die T-Zelle, das diese veranlasst, die feindliche Zelle anzugreifen. Diese Moleküle werden als chimäre Rezeptoren bezeichnet.

Die so aufgerüsteten Immunzellen sollen den Patienten künftig im Kampf gegen den Krebs schlagkräftig unterstützen. Dazu würden die natürlichen T-Zellen aus dem Blut der Patienten entnommen und anschließend der Bauplan für die chimären Rezeptoren, die sogenannte mRNA, eingeschleust werden. Die Zellen würden die künstlichen Rezeptoren dann selbst herstellen. Damit können zelleigenen Synthesemechanismen genutzt werden, ohne die Zelle jedoch genetisch zu manipulieren. Die so modifizierten T-Zellen sollen dem Patienten dann direkt injiziert werden.

Eine Schlüsselrolle bei der Konstruktion des optimalen chimären Rezeptors spielt diejenige Untereinheit, welche die Bindung an die Tumorzelle vermittelt. Idealerweise passt sie an eine Struktur auf der Krebszelle wie ein Schlüssel in ein Schloss. Gleichzeitig darf sie nicht in der Lage sein, sich an gesunde Zellen zu hängen, da letztere selbstverständlich nicht geschädigt werden sollen. Die Identifizierung und Erforschung des bestgeeigneten chimären Rezeptors stellt einen entscheidenden Schritt auf dem Weg zur klinischen Anwendung dar.

Die Wilhelm Sander-Stiftung fördert dieses Forschungsprojekt mit über 90.000 Euro. Stiftungszweck der Stiftung ist die medizinische Forschung, insbesondere Projekte im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden dabei insgesamt über 190 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Kontakt:
Dr. Niels Schaft, Ph. D, Arbeitsgruppenleiter an der Hautklinik des Universitätsklinikums Erlangen
Hartmannstrasse 14, 91052 Erlangen
Telefon: +49 (0)9131 85-31127, Email: niels.schaft@uk-erlangen.de

Bernhard Knappe | idw
Weitere Informationen:
http://www.wilhelm-sander-stiftung.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics