Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aufbau der Doppelschicht von Biomembranen

30.01.2013
Platzanweiser für Membran-Bausteine

Biomembranen bestehen aus einem Mosaik einzelner, dicht gepackter Fettmoleküle. Gebildet werden diese Moleküle im Inneren der Zellen. Doch wie schaffen es die Bausteine, an die richtige Stelle in der Membran zu kommen? Wissenschaftler der Technischen Universität München (TUM) haben dafür einen neuen Mechanismus entdeckt.


Wenn das schraubenförmige Peptid ein Fettmolekül bindet, kann das neu gebildete Phospholipid durch die erste in die zweite Membranschicht schlüpfen. Grafik: D. Langosch et al./Chemistry & Biology, Volume 20, 24 January 2013

Die Fettmoleküle der Membranen, auch Phospholipide genannt, sind aus zwei Untereinheiten aufgebaut. An einem wasserlöslichen Kopf hängen zwei lange Fettsäureketten. In der Membran ordnen sich die Moleküle in einer Doppelschicht an: Alle Köpfe zeigen nach außen, die Fettketten liegen sich wie bei einem Reißverschluss gegenüber.

Biomembranen werden ständig umgebaut oder erneuert, zum Beispiel, wenn Zellen sich teilen. Daher stellt die Zelle ständig neue Phospholipide her, die sich einreihen müssen – und zwar in beide Schichten der Biomembran. Allerdings produzieren Zellen Phospholipide nur an einer Seite der Biomembran. Von dort aus müssen sie in die zweite Hälfte der Doppelschicht transportiert werden.

Hilfe beim Weg durch die Membran

Das Problem dabei: Wasser- und fettlösliche Molekülbereiche stoßen sich ab. „Die Moleküle können sich zwar mit ihrem fettlöslichen Fußteil in einer der beiden Membranschichten verankern“, erklärt Prof. Dieter Langosch vom Lehrstuhl für Chemie der Polymere. „Der Weg in die zweite Schicht bleibt ihnen verwehrt: Die wasserlöslichen Köpfe kommen nicht an den fettlöslichen Fettketten vorbei.“

Für einen geordneten Aufbau der Membranen braucht es daher Enzyme, die die Moleküle an ihren richtigen Platz in der „zweiten Reihe“ bringen. Seit langem suchen Wissenschaftler nach solchen Enzymen – Flippasen genannt. Prof. Langosch und sein Team wurden jetzt fündig. Sie experimentierten mit künstlichen Proteinstücken (Peptiden). Diese befördern Phospholipide durch die Membran.

Der Trick: Vorbeimogeln

Dabei stießen die Wissenschaftler auf einen indirekten Transportmechanismus. Die Peptide erstrecken sich über beide Membranschichten – und sind in der Lage, einzelne Phospholipide festzuhalten. Langosch: „Wenn die Peptide die Moleküle fixieren, wird der benachbarte Membranbereich kurz gestört: Diesen Moment nutzen die neuen Phospholipide, um durch die Barriere der ersten Lipidschicht zu flutschen und sich in die zweite Molekülreihe einzuordnen.“

Die Wissenschaftler haben jetzt eine klare Vorstellung, wie Flippasen arbeiten. „Die von uns eingesetzten Peptide sind aufgebaut wie ein Korkenzieher, der sich durch die Membran schraubt. Besitzt diese so genannte alpha-Helix dynamische Anteile, kann sie Phospholipide binden“, so Langosch. „Dieser modellhafte Aufbau wird uns dabei helfen, die Flippasen-Enzyme aufzuspüren.“

Publikation:
Structural Properties of Model Phosphatidylcholine Flippases: Marcella Langer, Rashmi Sah, Anika Veser, Markus Gütlich, Dieter Langosch; CELL, Chemistry & Biology; Volume: 20; Issue: 1; 2012, http://dx.doi.org/10.1016/j.chembiol.2012.11.006.
Pressemitteilung im Web:
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/30322/
Mehr Informationen:
Pressemitteilung "Wasserabstoßung zwischen Biomembranen":
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/lang/article/30028/
Kontakt:
Prof. Dr. Dieter Langosch
Technische Universität München
Lehrstuhl für Chemie der Polymere
T: +49.861.71.3500
E: langosch@tum.de
W: http://www.wzw.tum.de/biopolymere/
Die Technische Universität München (TUM) ist mit rund 500 Professorinnen und Professoren, 9.000 Mitarbeiterinnen und Mitarbeitern und 32.000 Studierenden eine der führenden technischen Universitäten Europas. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 und 2012 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. In nationalen und internationalen Vergleichsstudien rangiert die TUM jeweils unter den besten Universitäten Deutschlands. Die TUM ist dem Leitbild einer forschungsstarken, unternehmerischen Universität verpflichtet. Weltweit ist die TUM mit einem Forschungscampus in Singapur sowie Niederlassungen in Peking (China), Brüssel (Belgien), Kairo (Ägypten), Mumbai (Indien) und Sao Paulo (Brasilien) vertreten.

Prof. Dr. Dieter Langosch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
21.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
18.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics