Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf verschlungenen Wegen zur Genaktivität

01.08.2014

Kleine chemische Änderungen an der DNA, die Methylgruppen, können darüber entscheiden, ob ein Gen abgelesen wird oder nicht.

Wissenschaftler aus dem Deutschen Krebsforschungszentrum entdeckten nun, auf welche Weise die Methylmarkierungen die Genaktivität regulieren können: Sie beeinflussen, wo sich die DNA um ihre Verpackungsproteine schlingt und dabei die so genannten Nukleosomen formt. Die Entfernung der Methylgruppen macht diese Spulen instabil und gibt bislang unzugängliche DNA-Bereiche zur Bindung von Enzymen frei, die die Genaktivität ankurbeln.

Zellen kontrollieren sehr genau, welche ihrer Gene zu einem gegebenen Zeitpunkt aktiv sind und abgelesen werden können. Entscheidend ist dies beispielweise, wenn eine Stammzelle zur spezialisierten Gewebezelle ausreift und dabei ganz andere zelluläre Programme abrufen muss. Eine Vielzahl sogenannter epigenetischer Mechanismen ist an dieser Regulation beteiligt. Ein besonders wichtiges epigenetisches Signal ist die Methylierung der DNA: Einzelne Methylgruppen am DNA-Baustein Cytosin beeinflussen, ob die Information eines Gens abgelesen werden kann.

„Zahlreiche Studien zeigen dramatische Unterschiede im DNA-Methylierungsmuster zwischen verschiedenen Zellen“, sagt Dr. Karsten Rippe vom Deutschen Krebsforschungszentrum. „Bislang war aber nicht bekannt, auf welche Weise die Änderungen der DNA-Methylierung bewirken, dass ein Gen abgelesen wird oder eben nicht.“

Der Genomforscher aus dem DKFZ vermutete, dass die Methylierung sich auf die Verpackung der DNA auswirken könnte: Der meterlange DNA-Faden liegt nicht als chaotisches Knäuel im Zellkern, sondern als komplex gewickelte Struktur vor. Die Spulen, um die der DNA-Faden zunächst geschlungen ist, bestehen aus einen Komplex mehrerer Proteine. Die gewickelten Spulen werden als Nukleosomen bezeichnet, die durch den DNA „Faden“ zu einer Kette verknüpft sind.

Dort, wo die DNA zu Nukleosomen aufgespult ist, ist sie oft unzugänglich für die Enzyme, die das Erbgut lesen und aktivieren. Deshalb müssen die Bindungsstellen dieser „Genschalter“ auf dem Fadenabschnitt zwischen den Nukleosomen liegen, um ein Gen anschalten zu können.

Rippes Team entdeckte nun, dass die Position der Spulen abhängig von der Methylierung der DNA ist. Die Forscher verglichen stärker oder schwächer methylierte DNA in embryonalen Stammzellen und in den daraus hervorgehenden ausgereiften Zellen. Änderte sich im Zuge dieser Entwicklung das Methylierungsmuster der DNA, so änderte dies gleichzeitig die Positionen der Nukleosomen an bestimmten Stellen des Genoms. Dort, wo die Zellen die DNA-Methylierung durch Hydroxymethylierung ersetzt hatten, waren die Nukleosomen instabil und konnten durch das DNA-bindende Protein CTCF verdrängt werden. Auf stabil methylierter DNA dagegen saßen die Nukleosomen fest und CTCF kam nicht zum Zuge.

CTCF ist dafür bekannt, dass es die räumliche Faltung des DNA-Fadens begünstigt und so die dreidimensionale Anordnung des Erbmoleküls im Zellkern steuert. Dadurch separiert es aktive DNA-Bereiche von solchen, die nicht abgelesen werden und reguliert die Genaktivität. Vladimir Teif, der Erstautor der Arbeit, interpretiert seine Ergebnisse: „Die Methylierung gewinnt durch dieses Zusammenspiel einen viel größeren Aktionsradius: Es können großräumige Veränderung der dreidimensionalen Organisation der DNA in einem Bereich von bis zu 100.000 DNA-Bausteinen entstehen.“

Auch zwischen Krebszellen und gesunden Zellen bestehen erhebliche Unterschiede in der DNA-Methylierung und damit in der Aktivität der Gene. Die Forscher um Karsten Rippe prüfen in ihrer Arbeit nun bei Leukämie-Pateinten, ob sie in den Blutkrebs-Zellen eine tumortypische Verschiebung der Nukleosomen-Anordnung entdecken können.

Die Arbeit wurde vom Bundesministerium für Bildung und Forschung (BMBF) im ERASysBioPlus Programm gefördert.

Teif V.B., Beshnova D.A., Vainshtein Y., Marth C., Mallm J.P., Höfer T. and Rippe K. Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development. Genome Res. 24, 1285-1295. DOI: 10.1101/gr.164418.11

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Ansprechpartner für die Presse:

Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42-2854
F: +49 6221 42-2968
E-Mail: S.Seltmann@dkfz.de

Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
E-Mail: S.Kohlstaedt@dkfz.de

E-Mail: presse@dkfz.de

www.dkfz.de

Dr. Stefanie Seltmann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops