Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Suche nach dem optimalen Antikörper

03.11.2014

Ein Modell beschreibt, wie Antikörper in optimaler Qualität und Quantität entstehen

B-Zellen haben eine entscheidende Rolle bei der Abwehr von Krankheitserregern. Sie sind für die Produktion von Antikörpern zuständig und sind die einzigen Zellen im Körper, die aktiv ihre DNA mutieren, um neuartige Antikörper zu erfinden.


In silico-Photoaktivierung von B-Zellen in der dunklen Zone des Lymphknotens und deren anschließende Wanderung in die helle Zone. HZI / Meyer-Hermann

Sie sind so nicht nur in der Lage, Eindringlinge zu erkennen, sondern können diese auch mit für jede Bedrohung maßgeschneiderten Waffen unschädlich machen. Die erfolgreiche Produktion von in Anzahl und Wirksamkeit optimalen Antikörpern unterliegt einer Reihe von Mechanismen.

Wissenschaftler vom Helmholtz-Zentrum für Infektionsforschung (HZI) in Braunschweig haben nun mit einem mathematischen Modell den bisher einzigen Mechanismus identifiziert, der sowohl Menge als auch Wirksamkeit der Antiköroper gleichzeitig stärkt, und dies im „The Journal of Immunology“ veröffentlicht.

Neue Antikörper werden von B-Zellen in den Lymphknoten des Körpers hergestellt. In bestimmten Bereichen der Lymphknoten, den Keimzentren, durchlaufen diese B-Zellen vorher einen Auswahlprozess. Die Immunzellen vermehren sich, mutieren und verändern dabei ihre Antikörper.

Am Ende des Optimierungs-Kreislaufs von Mutation und Selektion stehen im Idealfall Antikörper, die bestimmte Strukturen von Krankheitserregern, sogenannte Antigene, optimal binden und möglichst effektiv neutralisieren. „Die B-Zellen durchlaufen einen Evolutionsprozess, um sich immer weiter zu verbessern“, sagt Prof. Michael Meyer-Hermann, Leiter der Abteilung „System-Immunologie“ am HZI.

Bei dem Selektionsprozess durchlaufen die B-Zellen eine Reihe von Auswahlverfahren. Jedes dieser Verfahren kann man verstärken oder abschwächen. „Die Wirkung kann man intuitiv verstehen: Wenn man den Selektionsdruck verstärkt, führt dies zu weniger Antikörpern, aber dafür sind diese von sehr guter Qualität. Schwächt man den Selektionsdruck ab, ist es umgekehrt, man erhält mehr Antikörper von schlechterer Qualität.“ sagt Meyer-Hermann. Sowohl Masse als auch Klasse mit einem Verfahren zu produzieren, ist der evolutionäre Idealfall. Bisher ging man davon aus, dass es diesen so nicht gibt.

In einem mathematischen Modell simulierte Meyer-Hermann die verschiedenen evolutionären Prozesse, die die B-Zellen während der Antikörperproduktion durchlaufen. Die Wissenschaftler wollten damit herausfinden, inwiefern sich die einzelnen Verfahren positiv auf die Selektion auswirken. „Tatsächlich konnten wir zeigen, dass von den drei untersuchten Regulationsprinzipien eines eine rein positive Wirkung aufweist“, sagt Meyer-Hermann.

Als nächstes müssten nun Immunologen den zugrunde liegenden Mechanismus mit Hilfe von Experimenten aufspüren und verstehen. „Sollte das gelingen, könnte man die Antikörperproduktion mit individuell angepassten Medikamenten gezielt steuern und so die Effizienz der körpereigenen Immunabwehr je nach medizinischem Kontext entweder unterstützen oder unterdrücken“, sagt Meyer-Hermann.

Diese Arbeit ist ein Beitrag zu dem vom BMBF geförderten eMED Projekt SYSIMIT, in dem es darum geht, die Abstoßung von Transplantaten früh zu erkennen und zu verhindern. Langfristig könnten die neuen Erkenntnisse auch zur Entwicklung personalisierter Therapien führen, weswegen Meyer-Hermanns Forschung unter anderem von der iMed-Initiative für personalisierte Medizin der Helmholtz-Gemeinschaft gefördert wird.

Originalpublikation:
Michael Meyer-Hermann,
Overcoming the Dichotomy of Quantity and Quality in Antibody Responses,
The Journal of Immunology;2014, doi: 10.4049/jimmunol.1401828

Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern.
http://www.helmholtz-hzi.de

Die Abteilung „System-Immunologie“ des HZI befasst sich mit der mathematischen Modellierung von immunologischen Fragestellungen. Die Abteilung ist mit dem Braunschweig Integrated Centre for Systems Biology (BRICS) assoziiert, einem neuen Forschungszentrum für Systembiologie, das gemeinsam vom HZI und der Technischen Universität Braunschweig gegründet wurde.


Weitere Informationen:

http://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/auf_der_suche_nach_dem_optimalen_antikoerper/ - Diese Meldung auf helmholtz-hzi.de
http://dx.doi.org/10.4049/jimmunol.1401828  - Link zur Originalpublikation

Dr. Jan Grabowski | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Selbstfaltendes Origami
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie

Digitalanzeige mit Touchscreen WAY-AX & WAY-DX von WayCon

27.06.2017 | Energie und Elektrotechnik

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie