Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf den historischen Spuren der Süßkartoffel

24.08.2017

Die Süßkartoffel gewinnt immer mehr an Popularität in unserer heimischen Küche. Mit unserer Kartoffel pflegt sie allerdings nur eine sehr entfernte Verwandtschaft. Wie erstaunlich komplex das Erbgut der Süßkartoffel ist, haben nun Forscher des Chenshan Botanischen Gartens (CSBG) in Shanghai, des Max-Planck-Instituts für Molekulare Genetik (MPIMG) in Berlin, des Shanghai Instituts für Pflanzenphysiologie und Ökologie (SIPPE), der Tai’an Akademie für Agrarwissenschaften (TAAS) in Shandong und des Max-Planck-Instituts für Molekulare Pflanzenphysiologie (MPIMP) in Potsdam in einem gemeinsamen Projekt aufgezeigt und ihre Ergebnisse in dem Fachjournal Nature Plants veröffentlicht.

Die Forschung an Kulturpflanzen steht neben der Forschung an Modelpflanzen, wie dem weltweit verbreiteten Wildkraut Ackerschmalwand (Arabidopsis thaliana), im Fokus vieler Wissenschaftler. Neben dem Verständnis der verschiedenen Pflanzen im Allgemeinen, stehen häufig auch Züchtungsziele, wie die Ertragssteigerung von Nutzpflanzen oder die Erhöhung der Resistenz gegen wechselnde Klimabedingungen im Fokus der Forschung. Im Angesicht einer wachsenden Weltbevölkerung sind dies wichtige Schritte zur Sicherung der Nahrung.


Die hexaploide Süßkartoffel hat einen sechsfachen Chromosomensatz.

Jun Yang

Die Entschlüsselung des Erbguts einer Pflanze ist ein erster Schritt, um diese besser zu verstehen. In Deutschland zählen Kartoffeln und Weizen zu den wichtigsten Kulturpflanzen, die entsprechend gut untersucht und charakterisiert sind. Nun ist es gelungen eine weitere global wichtige Nutzpflanze ein Stück weit besser zu verstehen.

Den Forschern der fünf Institutionen in China und Deutschland ist es gelungen das komplette Genom der Süßkartoffel zu sequenzieren. Die Süßkartoffel mit dem lateinischen Namen Ipomoea batatas gehört zu der Familie der Windengewächse und ist mit mehr als 100 Millionen Tonnen pro Jahr die siebentwichtigste Nutzpflanze der Welt. In China hat sie sogar einen noch größeren Stellenwert.

Bereits im Vorfeld war klar, dass die Süßkartoffel mit ihrem komplexen Genom ein schwieriger Kandidat für die komplette Sequenzierung darstellen würde. Immerhin bringt sie es auf 90 Chromosomen, was selbst für Pflanzen eine doch recht beträchtliche Menge ist. Wie auch beim Weizen liegt hier ein sechsfacher Chromosomensatz vor.

Dieses Phänomen nennt man Polyploidie und es beschreibt das Vorliegen von mehr als einem „normalen“ diploiden Chromosomensatz (2n) in einem Genom. Im Fall von Süßkartoffel und Weizen spricht man von einem hexaploiden Chromosomensatz, in dem jedes Chromosom in sechsfacher Kopie, statt doppelter Ausführung vorliegt. Aber wie kann es zu solch einer Vervielfältigung der Chromosomen in Pflanzen kommen? Ursache kann eine fehlende Trennung der homologen Chromosomen während der Meiose sein. Dies kann zum Beispiel geschehen, wenn die dafür notwendigen Spindelfasern nicht richtig ausgebildet werden, wofür es verschiedenste Ursachen geben kann.

Man weiß heute, dass spontane Mutationen, genauso wie Gifte oder äußere Umwelteinflüsse zu diesem fehlerhaften Separieren der Chromosomen führen können. Dies kann durchaus negative Auswirkungen haben und sogar zum Absterben des Organismus führen. Im Falle von Pflanzen ist dieser Effekt jedoch auch manchmal durchaus positiv und kann zu einer beschleunigten Evolution einer Pflanzenspezies führen.

Ein besonderes Beispiel dafür findet man in der Evolutionsreihe unseres Weizens, bei welchem aus einer Mehrzahl von zufälligen Kreuzungen aus dem nur diploiden Einkorn (2n) der heute für uns so wichtige hexaploide Weichweizen (6n) entstanden ist. Ursache war hier die Einkreuzung von anderen Wildgräsern, deren diploider Chromosomensatz komplett in das Getreidegenom integriert wurde. So entstand zunächst aus dem Einkorn (2n) und einem Wildgras (2n) der tetraploide Emmer (4n), der sich ebenfalls spontan mit einem weiteren Wildgras (2n) kreuzte, welche somit den dritten diploiden Chromosomensatz in unseren heutigen hexaploiden Weichweizen brachte.

In ihrer in Nature Plants veröffentlichten Studie zeigen die Forscher, dass die heutige Süßkartoffel vor ca. 500.000 Jahren eine ähnliche Evolution durchgemacht hat. Sie entstand aus einer Kreuzung zwischen einem diploiden sowie einem tetraploiden Vorfahren und weist somit ebenfalls einen sechsfachen Chromosomensatz auf.

Mit Hilfe einer neu entwickelten Typisierungsmethode konnten die Wissenschaftler genau nachvollziehen welches der 90 Chromosomen von welcher Vorgängerpflanze stammte. Ebenfalls fanden sie heraus, dass einige Gene auf den jeweils 6 homologen Chromosomen bereits eine starke Anhäufung von Mutationen besitzen. Dies deutet darauf hin, dass die in sechsfacher Kopie vorliegenden Chromosomen einem viel schwächeren Selektionsdruck unterworfen sind. Die Polyploidie verleiht demnach einen evolutionären Vorteil. Oder anders gesagt: durch die Hexaploidie können sich diese Fehler in der Süßkartoffel akkumulieren ohne Auffälligkeiten in der Pflanze zu zeigen.

Kontakt
Prof. Alisdair Fernie
Max-Planck-Institut für Molekulare Pflanzenphysiologie
Tel. 0331/567 8211
fernie@mpimp-golm.mpg.de

Dr. Jana Dotzek und Dr. Ulrike Glaubitz
Referentinnen für Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Molekulare Pflanzenphysiologie
Tel. 0331/567 8275
pr@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de

Originalveröffentlichung
Jun Yang, M-Hossein Moeinzadeh, Heiner Kuhl, Johannes Helmuth, Peng Xiao, Stefan Haas, Guiling Liu, Jianli Zheng, Zhe Sun, Weijuan Fan, Gaifang Deng, Hongxia Wang, Fenhong Hu, Shanshan Zhao, Alisdair R Fernie, Stefan Boerno, Bernd Timmermann, Peng Zhang & Martin Vingron. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nature Plants, 2017; DOI: 10.1038/41477-017-0002.

Wissenswertes:
http://www.komm-ins-beet.mpg.de/wissenswertes/zuechtungsverfahren/auslesezuechtu...

Weitere Informationen:

http://www.mpimp-golm.mpg.de/2154870/suesskartoffel
http://www.komm-ins-beet.mpg.de/wissenswertes/zuechtungsverfahren/auslesezuechtu...

Dr. Ulrike Glaubitz | Max-Planck-Institut für Molekulare Pflanzenphysiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics