Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zur Schnupfimpfung

22.08.2017

HZI-Forscher klären Immunmechanismus anhand einer verstärkenden Substanz für Impfstoffe auf

Impfungen sind nach wie vor der sicherste Schutz vor vielen Infektionskrankheiten. Allerdings ist es nicht einfach, einen Impfstoff zu entwickeln, der das Immunsystem stark genug dazu anregt, schützende Immunantworten hervorzurufen, und gleichzeitig möglichst wenige Nebenwirkungen auslöst.


Gegenüber der Spritze hätte eine Impfung über die Schleimhäute per Nasenspray viele Vorteile, doch sind dafür verstärkende Substanzen – Adjuvantien – nötig.

HZI/Hallbauer&Fioretti

Dabei hat sich eine Kombination aus Bestandteilen des Krankheitserregers und zusätzlichen Verstärkern, sogenannten Adjuvantien, bewährt. Wissenschaftler des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig nutzen diese Erkenntnisse, um alternative Impfmethoden zu entwickeln, denn die Impfung per Spritze ist für viele Menschen unangenehm und ein Grund, sich nicht impfen zu lassen.

Ein möglicher Weg der Immunisierung geht über die Schleimhäute in der Nase. Dabei kommen Nanopartikel zum Einsatz, die mit Bestandteilen von Krankheitserregern und einem Adjuvans versetzt werden. Ihre Ergebnisse veröffentlichten die Forscher im Fachjournal Nanomedicine.

Ein Ziel der Impfstoffforschung ist es, Impfungen noch sicherer zu machen. Daher enthalten Impfstoffe oft nur Bestandteile von Krankheitserregern, gegen die das Immunsystem Antikörper bilden und so den Körper vor einer späteren Infektion schützen soll. Nun kann es aber passieren, dass das Immunsystem diese Bestandteile nicht mehr als gefährlich einstuft und gar nicht erst aktiv wird.

In dem Fall helfen Adjuvantien – Substanzen, die dem Impfstoff zugesetzt werden und seine Wirkung verstärken, indem sie das Immunsystem zusätzlich alarmieren. Ein Beispiel für ein solches Adjuvans ist ein Botenstoff, den Bakterien zur Signalweiterleitung und zur Kommunikation nutzen – zyklisches di-AMP. Gelangt dieses Molekül in den Körper, wird es vom Immunsystem als fremd erkannt und löst so eine Abwehrreaktion aus.

Dr. Kai Schulze, Wissenschaftler in der Abteilung „Vakzinologie“ von Prof. Carlos Guzmán am HZI, erforscht die Verabreichung von Impfstoffen über die Nasenschleimhaut – also per Nasenspray. Wer geimpft ist, erkranke zwar nicht, könne den Erreger aber noch auf andere Personen übertragen.

„Wenn wir den Impfstoff zum Beispiel per Nasenspray verabreichen, hat das den Vorteil, dass er neben der Bildung von Antikörpern gegen den Erreger auch die Schleimhäute selbst immunisiert“, sagt Schulze. Bei einem späteren Kontakt mit dem Krankheitserreger wehren die Schleimhäute ihn direkt ab, er könnte also auf diesem Weg gar nicht erst in den Körper eindringen und so auch nicht weitergegeben werden.

Diese Art der Impfung klingt zwar einfach, hat aber eine Schwachstelle: Schleimhäute verhindern nicht nur das Eindringen von Krankheitserregern, sondern sie bauen auch den Impfstoff ab. Mithilfe von Nanopartikeln versuchen die HZI-Forscher nun, dieses Problem zu umgehen. Als Gerüst für die Partikel kommen verschiedenste strukturgebende Moleküle infrage, die dann mit Bestandteilen von Krankheitserregern gespickt und mit zyklischem di-AMP als Adjuvans versetzt werden.

Die Forscher haben Nanopartikel aus verschiedenen synthetischen Molekülen – aus der Stoffklasse der Polyphosphazene – an Mäusen getestet. Dazu haben sie die Nanopartikel mit einem Testprotein gespickt und sie den Mäusen per Nasenspray über die Nasenschleimhaut verabreicht. Später infizierten sie die Mäuse mit einem Grippevirus, das das Testprotein bildet, und untersuchten die Reaktionen des Immunsystems sowie den erzielten Impfschutz im Vergleich zu dem nicht geimpfter Mäuse.

„Die Kombination der Nanopartikel aus Polyphosphazenen mit zyklischem di-AMP als Adjuvans hatte im Vergleich zu den nicht kombinierten Kandidaten eine deutlich stärkere Immunantwort zur Folge“, sagt Kai Schulze. Diese Ergebnisse zeigen, dass eine Immunisierung über die Nasenschleimhaut mit Nanopartikeln aus Polyphosphazenen zusammen mit zyklischem di-AMP als Adjuvans möglich ist. Weitere Studien müssen zeigen, ob sich die Ergebnisse auch in anderen Tiermodellen wiederholen lassen, bevor letztlich über einen Einsatz im Menschen nachgedacht werden kann.

Die Pressemitteilung und Bildmaterial finden Sie auch auf unserer Webseite unter dem Link https://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/auf_dem_...

Originalpublikation:
Kai Schulze, Thomas Ebensen, Lorne A. Babiuk, Volker Gerdts, Carlos A. Guzmán: Intranasal vaccination with an adjuvanted polyphosphazenes nanoparticle-based vaccine formulation stimulates protective immune responses in mice. Nanomedicine, 2017, DOI: 10.1016/j.nano.2017.05.012

Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. http://www.helmholtz-hzi.de

Ihre Ansprechpartner:
Susanne Thiele, Pressesprecherin
susanne.thiele@helmholtz-hzi.de
Dr. Andreas Fischer, Wissenschaftsredakteur
andreas.fischer@helmholtz-hzi.de

Helmholtz-Zentrum für Infektionsforschung GmbH
Presse und Kommunikation
Inhoffenstraße 7
D-38124 Braunschweig

Tel.: 0531 6181-1400; -1405

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik