Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zum individuellen Tumortherapeutikum

13.06.2017

Metallbasierte Wirkstoffe gehören zu den am häufigsten eingesetzten Medikamenten gegen Krebs – zu deren gezieltem Einsatz zur Zeit große Anstrengungen unternommen werden. Durch den Einsatz innovativer Analyseverfahren ist es einer Forschungsgruppe um Christopher Gerner von der Fakultät für Chemie der Universität Wien gelungen, definierte Interaktionspartner eines Organoruthenium-Wirkstoffes zu identifizieren und damit auch die molekularen Wirkmechanismen detailliert zu verstehen. Damit konnten wesentliche Voraussetzungen für eine maßgeschneiderte Therapie geschaffen werden. Die Studie erscheint in der aktuellen Ausgabe von "Angewandte Chemie International Edition".

Seit vielen Jahren versuchen ForscherInnen molekulare Zielstrukturen von metall-haltigen Wirkstoffen gegen Krebs zu identifizieren, um die exakten Wirkmechanismen ebenso wie individuelle Risikofaktoren besser einschätzen zu können.


Mit Plecstatin wurde ein Wirkstoff gefunden und charakterisiert, das als neuartiges maßgeschneidertes Medikament für die Krebstherapie eingesetzt werden könnte.

Copyright: Christopher Gerner/Wiley-VCH


Die Struktur von plecstatin-1.

Copyright: Christopher Gerner

Da sich diese Identifikation als recht schwierig herausgestellt hat, gehen WissenschafterInnen davon aus, dass metall-basierte Wirkstoffe eher unselektiv Krebszellen schädigen. Um einen optimalen Therapieerfolg ermöglichen zu können ist es aber erforderlich, maßgeschneiderte Medikamente mit eindeutigen molekularen Zielen und Wirkmechanismen individualisiert einzusetzen.

Einem Forschungsteam um Christopher Gerner von der Fakultät für Chemie der Universität Wien ist bei der Lösung der bekannten Problematik nun ein Meilenstein gelungen. Bei der Untersuchung von molekularen Zielstrukturen mittels Massenspektrometrie, insbesondere von metall-organischen rutheniumhaltigen Wirkstoffen, wurde deutlich, dass nicht DNA, sondern Proteine wichtige Zielmoleküle sind.

"Dieser Organoruthenium-Wirkstoff zeigte eine hohe Selektivität für Plektin, einem zentralen Zytoskelettmolekül, das für den Ablauf räumlich koordinierter Prozesse besonders wichtig ist", erklärt Samuel M. Meier, Post-Doc in der Gruppe von Gerner, der den Wirkstoff als Doktorand in der Gruppe von Dekan Bernhard Keppler hergestellt hat. Tatsächlich konnten die biologischen Effekte des nun als Plecstatin bezeichneten Wirkstoffes weitestgehend aus diesem biochemischen Befund erklärt werden, was den gewünschten Eigenschaften eines maßgeschneiderten Medikamentes entspricht.

"Unsere Ergebnisse geben Hoffnung, mit den bekannten analytischen Verfahren und Strategien nun auch Zielstrukturen von anderen, bereits etablierten Medikamenten identifizieren zu können", so Christopher Gerner. Damit werden letztlich auch wichtige Metall-organische Wirkstoffe in die Gruppe der maßgeschneiderten Medikamente eingegliedert, welche für den individualisierten und somit jeweils persönlich optimierbaren Einsatz zur Verfügung stehen. Mit Plecstatin wurde ein Wirkstoff gefunden und charakterisiert, das als neuartiges maßgeschneidertes Medikament für die Krebstherapie eingesetzt werden könnte.

Publikation in "Angewandte Chemie International Edition "
An Organoruthenium Anticancer Agent Shows Unexpected Target Selectivity For Plectin
Samuel M. Meier, Dominique Kreutz, Lilli Winter, Matthias H.M. Klose, Klaudia Cseh, Tamara Weiss, Andrea Bileck, Beatrix Alte, Johanna C. Mader, Samir Jana, Annesha Chatterjee, Arindam Bhattacharyya, Michaela Hejl, Michael A. Jakupec, Petra Heffeter, Walter Berger, Christian G. Hartinger, Bernhard K. Keppler, Gerhard Wiche and Christopher Gerner.
DOI: 10.1002/anie.201704644

Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Christopher Gerner
Institut für Analytische Chemie
Universität Wien
1090 Wien, Währinger Straße 38
T +43-1-4277-523 02
M +43-650-7287412
christopher.gerner@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feierte die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. http://www.univie.ac.at

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsmedikament bei der Arbeit beobachtet
19.04.2018 | Ruhr-Universität Bochum

nachricht Neues Bakterium aus Öl des Deepwater-Horizon-Unfalls beschrieben
18.04.2018 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Im Focus: Basler Forschern gelingt die Züchtung von Knorpel aus Stammzellen

Aus Stammzellen aus dem Knochenmark von Erwachsenen lassen sich stabile Gelenkknorpel herstellen. Diese Zellen können so gesteuert werden, dass sie molekulare Prozesse der embryonalen Entwicklung des Knorpelgewebes durchlaufen, wie Forschende des Departements Biomedizin von Universität und Universitätsspital Basel im Fachmagazin PNAS berichten.

Bestimmte mesenchymale Stamm-/Stromazellen aus dem Knochenmark von Erwachsenen gelten als äusserst viel versprechend für die Regeneration von Skelettgewebe....

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

Stralsunder IT-Sicherheitskonferenz im Mai zum 7. Mal an der Hochschule Stralsund

12.04.2018 | Veranstaltungen

Materialien erlebbar machen - MatX 2018 - Internationale Konferenz für Materialinnovationen

12.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Laser erzeugt Magnet – und radiert ihn wieder aus

18.04.2018 | Physik Astronomie

Neue Technik macht Mikro-3D-Drucker präziser

18.04.2018 | Physik Astronomie

Intelligente Bauteile für das Stromnetz der Zukunft

18.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics