Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atmen im Untergrund: Ungewöhnliche Strategien zum Überleben bei Sauerstoffknappheit

09.12.2010
Internationale Forschergruppe entdeckt bei Blindmullen und Robben
Besonderheit im Gehirn-Stoffwechsel

Die medizinischen Sofortmaßnahmen sind klar: Beatmung und Herzmassage, um so die Versorgung des Gewebes mit Sauerstoff sicher zu stellen. Ansonsten drohen dem Patienten schon wenige Minuten nach einem Herzinfarkt und Gehirnschlag irreversible Schäden, besonders im empfindlichen Nervensystem.

Umso erstaunlicher ist, dass einige Säugetiere in ihren natürlichen Lebensräumen Zeiten von Sauerstoffmangel ohne Schädigung ihrer Nervenzellen überstehen. So lebt die israelische Blindmulle Spalax, ein etwa 20 cm langes Nagetier, dauerhaft in ihren unterirdischen Gängen bei Sauerstoffkonzentrationen im Boden, die der Todeszone des Mount-Everest-Gipfels entsprechen.

Robben wiederum können während des Tauchens bis zu über einer Stunde den Atem anhalten. Gerade von solchen „extrem-begabten“ Tieren wollen die Mainzer Forscher Thomas Hankeln, Frank Gerlach und Stefan Reuss in enger Zusammenarbeit mit ihren Hamburger Kollegen Thorsten Burmester und Stephanie Mitz sowie Forschern in Israel und Norwegen lernen, wie vielleicht zukünftig lebensbedrohliche Sauerstoffmangelsituationen beim Menschen zu behandeln sind.

Dazu untersuchen die Molekularbiologen die Aktivität von sauerstoffbindenden Atmungsproteinen, sogenannten Globinen. Dass Globine in Nervenzellen vorkommen, haben Burmester und Hankeln vor etwa 10 Jahren als erste entdeckt. Und in der Tat, die Proteine Neuroglobin und Cytoglobin, die entweder kurzzeitig Sauerstoff speichern oder für die Zelle giftige reaktive Sauerstoffverbindungen beseitigen, werden im Gehirn der Blindmulle um ein Vielfaches stärker gebildet als bei Ratten, also Tieren, die wie Menschen sehr sensibel auf Sauerstoffmangel reagieren.

Als auffällige Gemeinsamkeit von Spalax und Robbe zeigt sich ein weiterer Unterschied, der vielleicht die eigentliche Ursache der Anpassung beider Arten an Sauerstoffmangel darstellt: Speziell Neuroglobin wird hier in Stützzellen des Nervensystems, den Astrozyten (Gliazellen), gefunden, während Mensch, Maus und Ratte dieses Atmungsprotein nur in Nervenzellen selbst bilden. Die Wissenschaftler vermuten daher, dass Säugetiere, die besonders gut mit Sauerstoffmangel zurechtkommen, während der evolutionären Anpassung an ihren extremen Lebensraum ihren gesamten Gehirn-Energiestoffwechsel umgestellt haben.

Spekuliert wird, dass die gegenüber Sauerstoffmangel toleranten Arten ihre sauerstoffverbrauchenden Stoffwechselwege primär in die Gliazellen verschoben haben. Umgekehrt scheinen die höchst empfindlichen Nervenzellen dadurch vor Schäden bewahrt zu werden, dass sie ihre Energie vor allem aus Stoffwechselvorgängen beziehen, die keinen Sauerstoff benötigen. Diese Erkenntnisse könnten zukünftige Wege aufzeigen, wie durch einen gezielten Einsatz der Atmungsproteine im Nervensystem kritische Phasen der Sauerstoffunterversorgung vielleicht besser zu bewältigen sind.

Veröffentlichungen:
Aaron Avivi, Frank Gerlach, Alma Joel, Stefan Reuss, Thorsten Burmester, Eviatar Nevo, and Thomas Hankeln
Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax

PNAS published ahead of print November 29, 2010, doi:10.1073/pnas.1015379107

Stephanie A. Mitz, Stefan Reuss, Lars P. Folkow, Arnoldus S. Blix, Jose M. Ramirez, Thomas Hankeln, Thorsten Burmester
When the brain goes diving: glial oxidative metabolism may confer hypoxia tolerance to the seal brain

Neuroscience (2009) 163:552-560; doi:10.1016/j.neuroscience.2009.06.058

Weitere Informationen:
Univ.-Prof. Dr. Thomas Hankeln
Institut für Molekulargenetik
Johannes Gutenberg-Universität Mainz
D 55099 Mainz
Tel. +49 6131 39-23277
Fax +49 6131 39-25846
E-Mail: hankeln@uni-mainz.de
Prof. Dr. Thorsten Burmester
Zoologisches Institut und Museum Grindel
Abteilung Tierphysiologie
Universität Hamburg
D 20146 Hamburg
Tel. +49 40 42838-3913
Fax +49 40 42838-3937
E-Mail: thorsten.burmester@uni-hamburg.de

Petra Giegerich | idw
Weitere Informationen:
http://www.iak-neuro.uni-mainz.de/Members/Hankeln_de.htm
http://www.pnas.org/content/early/2010/11/24/1015379107.short?rss=1

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verteidigung um fast jeden Preis
14.12.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

nachricht Mitochondrien von Krebszellen im Visier
14.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten