Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atmen, ohne Luft zu holen

21.12.2010
Forschungsgemeinschaft fördert mikrobiologische Forschergruppe der Universität Jena

Als das „dreckige Dutzend“ werden zwölf hochgiftige, chlorhaltige Substanzen bezeichnet, die in Pflanzenschutzmitteln und zahlreichen Industriechemikalien lange Zeit Verwendung fanden. Inzwischen in vielen Ländern verboten, gehört das „dreckige Dutzend“ weltweit noch immer zu den Altlasten. „Diese Verbindungen sind überaus langlebig und in der Umwelt fast überall zu finden“, weiß Prof. Dr. Gabriele Diekert von der Friedrich-Schiller-Universität Jena. Selbst im arktischen Eis, so die Inhaberin des Lehrstuhls für Angewandte und Ökologische Mikrobiologie, ließen sie sich nachweisen.

Doch nicht erst der Mensch hat die gefährlichen Chlor- und andere Halogenverbindungen in die Umwelt gebracht. Auch viele Mikroorganismen produzieren halogenierte Kohlenwasserstoffe – und das bereits seit Jahrmillionen. „Etwa 4.000 solcher natürlich entstandenen Substanzen sind heute bekannt“, sagt Prof. Diekert. Doch anders als die vom Menschen produzierten Verbindungen, reichern sich diese nicht in der Umwelt an. „Es muss also natürliche Abbaumechanismen für halogenierte Kohlenwasserstoffe geben“, so Prof. Diekert.

Diesen Mechanismen will sich nun eine neue Forschergruppe der Mikrobiologen von der Jenaer Universität zuwenden. Das Team um Prof. Diekert untersucht in den kommenden drei Jahren Bakterien, die ohne Sauerstoff leben und stattdessen giftige Chlorverbindungen zur Energieversorgung in einer anaeroben Atmung nutzen („Organohalid-Respiration“). Die Forschergruppe „Anaerobic Biological Dehalogenation“ wird von der Deutschen Forschungsgemeinschaft (DFG) gefördert. Die Friedrich-Schiller-Universität Jena wird dabei mit über 450.000 Euro unterstützt.

Im Mittelpunkt der Forschung stehen Mikroorganismen, die zum Beispiel zu den Gattungen Sulfurospirillum, Desulfitobacterium oder Dehalococcoides gehören. Die Mechanismen, die es diesen Bakterien erlauben, ohne Sauerstoff zu atmen und dabei Chlorsubstrate zu dechlorieren, sind noch weitestgehend unverstanden. Dies wollen die Forscher nun ändern. Neben Prof. Diekert und ihrem Jenaer Team sind Wissenschaftler der Universitäten Halle-Wittenberg und Leipzig, der TU Berlin, des Helmholz-Zentrums für Umweltforschung in Leipzig und der Universität im niederländischen Wageningen an der Forschergruppe beteiligt.

„Wir wollen herausfinden, wie die Reaktionsmechanismen ablaufen, wie der Prozess genetisch reguliert wird, wie die Organohalid-Respiration funktioniert und wie der gesamte biochemische Reaktionsapparat im Laufe der Evolution entstanden ist“, kündigt Projekt-Sprecherin Diekert an. Das sei zum gegenwärtigen Zeitpunkt zwar alles reine Grundlagenforschung. „Unsere Ergebnisse werden in der Zukunft aber auch zu praktischen Anwendungen führen“, ist die Mikrobiologin überzeugt. Denn seien die Mechanismen erst einmal verstanden, ließen sie sich auch zum Abbau von anthropogenen Schadstoffen nutzen.

Kontakt:
Prof. Dr. Gabriele Diekert, Dr. Torsten Schubert
Institut für Mikrobiologie der Friedrich-Schiller-Universität Jena
Philosophenweg 12, 07743 Jena
Tel.: 03641 / 949300, 03641 / 949349
E-Mail: gabriele.diekert[at]uni-jena.de, torsten.schubert[at]uni-jena.de

Dr. Ute Schönfelder |
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

nachricht Wehrhaft gegen aggressiven Sauerstoff - Metalloxid-Nickelschaum-Elektroden in der Wasseraufspaltung
25.04.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungsnachrichten

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik