Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Asymmetrie im Embryo: Neues Forschungsprojekt untersucht, wie das Herz an den rechten Fleck gelangt

09.04.2010
Aktuelle Ausgabe von Current Biology: Biologen der Universität Hohenheim entdecken neuen Wirkmechanismus zur Rechts-Links-Asymmetrie bei Fröschen / Folge-Projekt durch 325.000 € der DFG gesichert

Sie arbeiten mit Tapetenkleister, Bioinformatik und viel Fingerspitzengefühl. Seit mehreren Jahren betreiben Entwicklungsbiologen der Universität Hohenheim High-Tech-Grundlagenforschung mit Potential für medizinische Anwendung. An wenige Tage alten Froschkaulquappen untersuchen sie, wie sich Organe von Wirbeltieren asymmetrisch in die rechte oder linke Körperhälfte sortieren - während Augen, Ohren, Arme und Beine einer strengen Rechts-Links-Symmetrie folgen. Gestern veröffentlichten die Biologen um Prof. Dr. Martin Blum ihre neuesten Ergebnisse im Fachjournal Current Biology. Jetzt stärkt die DFG die Asymmetrie-Forschung mit 325.000€ und macht das Projekt zu einem der Schwergewichte der Forschung in Hohenheim.

Ob Frosch oder Vogel, Mensch oder Maus: von außen sehen Wirbeltiere auf der rechten Körperhälfte genauso aus wie auf der linken. Doch in ihrem Inneren ist Schluss mit der Symmetrie: Das Herz schlägt links, der Blinddarm entzündet sich rechts, auch Lunge, Leber und Milz ordnen sich nicht in ein spiegelsymmetrisches Rechts-Links-Schema ein.

Zum Glück, denn wenn die innere Ordnung gestört ist, können zum Teil schwere Krankheiten die Folge sein: "Statistisch treten solche Fälle bei ca. einer von 1.000 Personen auf. "Die Folgen reichen von Herzfehlern bis zum Fehlen der Milz. Auch eine häufige Nierenerkrankung des Menschen, das Zystennierensyndrom, lässt sich auf Defekte in der Cilien-Funktion eines Gens zurückführen, das im frühen Embryo die Asymmetrie steuert", erklärt Prof. Dr. Martin Blum, Entwicklungsbiologe an der Universität Hohenheim.

Mehrjährige Vorarbeiten

Die neuesten Erkenntnisse der Entwicklungsbiologen um Prof. Dr. Blum bauen auf langjähriger Forschung in Hohenheim auf. Vor wenigen Jahren entdeckten die Entwicklungsbiologen in Frosch-Embryonen ein Areal, in dem die Zellen eine Art Wimpern - sogenannte Cilien - trugen.

Die Wimpern schlagen synchron im Kreis und erzeugen dabei einen nach links gerichteten Flüssigkeitsstrom innerhalb des Embryos. Diese Strömung aktiviert eine kleine Gruppe von nur drei Genen in den Zellen der linken Körperhälfte, die daraufhin als erstes Organ das Herz asymmetrisch links anlegen. In der rechten Körperhälfte bleiben die gleichen Gene inaktiv.

Repressor ist Schlüssel zur Gen-Aktivierung

Jetzt sind die Hohenheimer Forscher dem Mechanismus der Gen-Aktivierung ein Stück näher gekommen und veröffentlichten die Ergebnisse ihrer Studie in der aktuellen Ausgabe von Current Biology. Nach den jüngsten Ergebnissen hebt der Flüssigkeitsstrom einen Repressor gezielt auf der linken Seite auf. Vor Einsetzen dieser Strömung hält dieser Repressor auf beiden Seiten einen Aktivator der asymmetrischen Gene in Schach. Dank dieses Repressors ist Symmetrie im Äußeren darum der Normalzustand. Wird der Repressor durch die Flüssigkeitsströmung auf der linken Seite ausgeschaltet, setzt er in der linken Körperhälfte den Aktivator in Gang und gibt damit den genetischen Befehl, der für die asymmetrischen Gene und für Organ-Asymmetrie im Bauchraum verantwortlich ist.

Kleister und Fingerspitzengefühl

Bereits für diese Ergebnisse war viel Fingerspitzengefühl nötig, wie Prof. Dr. Blum beweist. Der Entwicklungsbiologe fischt eine winzige Kaulquappe aus einer Petrischale und betäubt das wenige Tage alte Froschbaby, damit es ihm sein transparentes Bäuchlein zustreckt. Unter dem Mikroskop zeigt sich schnell, wie herum das Herz oder der Darm gewunden sind. In einer anderen Schale sind junge Kaulquappen so eingefärbt, dass man die asymmetrischen Gene sieht: eine blau eingefärbte Linie in der linken Körperhälfte des Froschembryos zeigt an, dass das rechts-links-Gen korrekt aktiviert ist. Sieht man keine blaue Linie, wurde das Gen nicht korrekt angeschaltet.

Zwei bis vier Tage früher lagen die Froschembryonen schon einmal auf Blums Experimentiertisch. Mit einem wenige Zellen großen Embryo, der mit bloßem Auge nur als schwarzer Punkt zu erkennen ist, spielten die Biologen der Universität Hohenheim verschiedene Fälle durch. "Stoppt man den Flüssigkeitsstrom mit Tapetenkleister auf dem Cilienfeld, ordnen sich die Organe komplett durcheinander an", erklärt Prof. Dr. Blum.

Heben die Biologen den Repressor durch Injektion einer Chemikalie gezielt auf, erscheint die blaue Linie wieder. Die Organe orientieren sich nach links. "Mit statistischer Bioinformatik konnten wir dann unsere Hypothese, dass der Flüssigkeitsstrom nicht direkt, sondern nur über einen Repressor das Gen aktiviert, verifizieren", meint Prof. Dr. Blum.

DFG-Projekt sichert weitere Forschung

Welche Vorgänge an der Schnittstelle zwischen Flüssigkeitsstrom und Repressor wirken, wollen die Biologen jetzt genauer erforschen. Durch welchen Mechanismus wird der Repressor abgestellt, und von welcher Beschaffenheit ist der Flüssigkeitsstrom, der den mysteriösen Abschalter transportiert?

"Wir suchen Mister X", sagt Prof. Dr. Blum und hat sich für die Suche zwei Doktoranden mit ins Boot geholt. Das Forschungsprojekt wird von der deutschen Forschergemeinschaft (DFG) für die kommenden drei Jahre mit 325.000€ gefördert.

Biologische Signale: Ein Forschungsschwerpunkt der Universität Hohenheim

In den Lebenswissenschaften gehört die Erforschung von biologischen Signalen derzeit zu den attraktivsten und innovativsten Forschungsfeldern. Im Fokus stehen fundamentale Lebensprozesse: von den elementaren Vorgängen in der Zelle und den komplexen Regelprozessen über multizelluläre Lebewesen bis hin zur Kommunikation von Organismen in und mit ihrer Umwelt. Das Grundlagenthema hat einen Anwendungsbezug, der aktuelle biomedizinische Probleme; ökologisch relevante Fragestellungen sowie neue Verfahrens- und Produktionstechnologien einschließt. Weitere Forschungsschwerpunkte der Universität Hohenheim sind die Agrar- und Ernährungsforschung im Rahmen der Food-Chain, Beiträge der Landwirtschaft zur Energie- und Rohstoffversorgung und der Forschungsschwerpunkt Innovation und Dienstleistung.

Hintergrund: Schwergewichte der Forschung

Rund 26 Millionen Euro an Drittmitteln akquirierten Forscher der Universität Hohenheim allein im vergangenen Jahr - gut 20% mehr als im Vorjahr. In loser Folge präsentiert die Reihe "Schwergewichte der Forschung" herausragende Forschungsprojekte mit einem Drittmittelvolumen von mindestens einer viertel Million Euro bzw. 125.000 Euro in den Wirtschafts- und Sozialwissenschaften.

Ansprechperson:
Prof. Dr. Martin Blum, Universität Hohenheim, Lehrstuhl für Zoologie
Tel.: 0711 459-22255, E-Mail: martin.blum@uni-hohenheim.de

Florian Klebs | idw
Weitere Informationen:
http://www.cell.com/current-biology/abstract/S0960-9822%2810%2900334-9

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten