Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Arylboronate leicht gemacht

20.08.2015

Teure und toxische Materialien in der chemischen Synthese überflüssig machen: Dieses Ziel verfolgen auch Forscher der Universität Würzburg. Einen neuen Weg dorthin beschreiben sie in der Zeitschrift „Angewandte Chemie“ – und einen Überraschungseffekt gleich mit dazu.

Arylboronate sind wichtige Grundstoffe für die industrielle Herstellung zahlreicher Produkte. Dazu gehören Medikamente, Chemikalien für die Landwirtschaft oder Flüssigkristalle für Displays. Für die Synthese der Arylboronate kommen bislang metallhaltige Katalysatoren zum Einsatz, die zum Beispiel Palladium, Iridium oder Nickel enthalten.


Mit Zink als Katalysator lassen sich ringförmige Moleküle simultan mit zwei Boronatgruppen bestücken.

(Bild: Todd Marder)

Das hat Nachteile: Diese Metalle sind entweder teuer oder toxisch oder beides gleichzeitig. Nickel zum Beispiel kann Allergien auslösen. Wenn es für die Produktion von Medikamenten eingesetzt wird, muss es nach dem Reaktionsprozess mit großem Aufwand wieder aus dem Produkt entfernt werden.

Fortschritt mit Zink-Katalysatoren

Die Würzburger Chemiker Shubhankar Kumar Bose und Todd Marder stellen jetzt einen völlig neuartigen katalytischen Prozess vor, mit dem sich Arylboronate kostengünstiger und umweltverträglicher herstellen lassen. Das ist ihnen mit zinkhaltigen Katalysatoren gelungen. „Zink ist billig, nicht toxisch und auf der Erde reichlich vorhanden“, zählt Marder einige Vorteile dieses Metalls auf.

Wie das Team in der Zeitschrift „Angewandte Chemie“ berichtet, ist bei dieser Forschungsarbeit ein verblüffender Effekt aufgetreten. Die Wissenschaftler können ihn noch nicht hundertprozentig erklären, doch er dürfte in der Fachwelt für Aufsehen sorgen – weil er möglicherweise einen Schlüssel liefert, um viele wichtige Arylboronate künftig noch einfacher synthetisieren zu können.

Simultanes Anknüpfen von Boronatgruppen

Was die Chemiker in Erstaunen versetzt hat? Für die Herstellung der Arylboronate werden ringförmige Moleküle verwendet, an denen entweder ein Wasserstoff-Atom oder ein Halogen-Atom (Brom, Fluor oder Iod) durch eine so genannte Boronatgruppe ausgetauscht wird. Als die Würzburger diesen Tausch mit ihrem Zink-Katalysator ablaufen ließen, geschah beides gleichzeitig: An dem Ring wurden sowohl das Halogen- als auch ein benachbartes Wasserstoff-Atom durch Boronat ersetzt. Das Ergebnis ist ein Aryl mit zwei Boronatgruppen. Diese Moleküle lassen sich normalerweise nicht so einfach erzeugen und sind für industrielle Synthesen hoch interessant.

„Das war völlig unerwartet“, sagt Marder, „und wir wissen bislang nicht, über welchen chemischen Mechanismus das passiert ist.“ Mit Experimenten haben die Würzburger schon einige Reaktionswege identifiziert, die dafür keinesfalls in Frage kommen. Nach dem Ausschlussverfahren schlagen sie darum in „Angewandte Chemie“ einen möglichen Reaktionsmechanismus vor.

Die nächsten Forschungsschritte

Was bei der Reaktion mit dem Zink-Katalysator genau passiert, wollen die Wissenschaftler als nächstes herausfinden. Außerdem tüfteln sie jetzt daran, die Ausbeute des hoch erwünschten Stoffs zu steigern: Bei der Reaktion entstehen rund 70 Prozent Moleküle mit einer Boronatgruppe und nur circa 30 Prozent Moleküle mit zwei Boronatgruppen.

Evolution in der Katalyse

Dieser Erfolg ist der vorläufige Höhepunkt einer „Evolution in der Katalyse“, an der Marders Arbeitskreis in den vergangenen Jahren in vorderster Reihe mitgewirkt hat. Die katalysierte Herstellung von Arylboronaten gelang erstmals 1995 mit Palladium in Japan; die entsprechende Reaktion wird nach ihrem „Vater“ als Miyaura-Borylierung bezeichnet.

Arylboronate werden für die Suzuki-Miyaura-Reaktion benötigt, für deren Realisierung Akira Suzuki 2010 den Nobelpreis für Chemie bekam. 2009 gelang es in Marders Arbeitskreis, seinerzeit an der Universität Durham in England, solche Reaktionen mit Kupfer-Katalysatoren ablaufen zu lassen. Kupfer ist ein günstiges Übergangsmetall mit geringer Toxizität.

Shubhankar Kumar Bose, der 2013 als Humboldt-Stipendiat zu Marder nach Würzburg kam, hatte schließlich die Idee, es mit Zink als Katalysator zu versuchen. Die Reaktion klappte 2014 zuerst mit kettenförmigen Molekülen (Alkylboronate) und nun auch mit ringförmigen Boronaten. Das bringt einen weiteren Vorteil: Zink ist noch preisgünstiger als Kupfer und nicht toxisch.

„Simultane Zink-katalysierte C–X- und C–H-Borylierung von Arylhalogeniden“, Shubhankar Kumar Bose, Andrea Deißenberger, Antonius Eichhorn, Patrick G. Steel, Zhenyang Lin, Todd B. Marder. Angewandte Chemie, online publiziert am 18. August 2015, DOI: 10.1002/ange.201505603

Kontakt

Prof. Dr. Todd Marder, Institut für Anorganische Chemie, Universität Würzburg, T (0931) 31-85514, todd.marder@uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Studie entschlüsselt neue Diabetes-Gene
22.01.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft
22.01.2018 | Humboldt-Universität zu Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics