Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Arylboronate leicht gemacht

20.08.2015

Teure und toxische Materialien in der chemischen Synthese überflüssig machen: Dieses Ziel verfolgen auch Forscher der Universität Würzburg. Einen neuen Weg dorthin beschreiben sie in der Zeitschrift „Angewandte Chemie“ – und einen Überraschungseffekt gleich mit dazu.

Arylboronate sind wichtige Grundstoffe für die industrielle Herstellung zahlreicher Produkte. Dazu gehören Medikamente, Chemikalien für die Landwirtschaft oder Flüssigkristalle für Displays. Für die Synthese der Arylboronate kommen bislang metallhaltige Katalysatoren zum Einsatz, die zum Beispiel Palladium, Iridium oder Nickel enthalten.


Mit Zink als Katalysator lassen sich ringförmige Moleküle simultan mit zwei Boronatgruppen bestücken.

(Bild: Todd Marder)

Das hat Nachteile: Diese Metalle sind entweder teuer oder toxisch oder beides gleichzeitig. Nickel zum Beispiel kann Allergien auslösen. Wenn es für die Produktion von Medikamenten eingesetzt wird, muss es nach dem Reaktionsprozess mit großem Aufwand wieder aus dem Produkt entfernt werden.

Fortschritt mit Zink-Katalysatoren

Die Würzburger Chemiker Shubhankar Kumar Bose und Todd Marder stellen jetzt einen völlig neuartigen katalytischen Prozess vor, mit dem sich Arylboronate kostengünstiger und umweltverträglicher herstellen lassen. Das ist ihnen mit zinkhaltigen Katalysatoren gelungen. „Zink ist billig, nicht toxisch und auf der Erde reichlich vorhanden“, zählt Marder einige Vorteile dieses Metalls auf.

Wie das Team in der Zeitschrift „Angewandte Chemie“ berichtet, ist bei dieser Forschungsarbeit ein verblüffender Effekt aufgetreten. Die Wissenschaftler können ihn noch nicht hundertprozentig erklären, doch er dürfte in der Fachwelt für Aufsehen sorgen – weil er möglicherweise einen Schlüssel liefert, um viele wichtige Arylboronate künftig noch einfacher synthetisieren zu können.

Simultanes Anknüpfen von Boronatgruppen

Was die Chemiker in Erstaunen versetzt hat? Für die Herstellung der Arylboronate werden ringförmige Moleküle verwendet, an denen entweder ein Wasserstoff-Atom oder ein Halogen-Atom (Brom, Fluor oder Iod) durch eine so genannte Boronatgruppe ausgetauscht wird. Als die Würzburger diesen Tausch mit ihrem Zink-Katalysator ablaufen ließen, geschah beides gleichzeitig: An dem Ring wurden sowohl das Halogen- als auch ein benachbartes Wasserstoff-Atom durch Boronat ersetzt. Das Ergebnis ist ein Aryl mit zwei Boronatgruppen. Diese Moleküle lassen sich normalerweise nicht so einfach erzeugen und sind für industrielle Synthesen hoch interessant.

„Das war völlig unerwartet“, sagt Marder, „und wir wissen bislang nicht, über welchen chemischen Mechanismus das passiert ist.“ Mit Experimenten haben die Würzburger schon einige Reaktionswege identifiziert, die dafür keinesfalls in Frage kommen. Nach dem Ausschlussverfahren schlagen sie darum in „Angewandte Chemie“ einen möglichen Reaktionsmechanismus vor.

Die nächsten Forschungsschritte

Was bei der Reaktion mit dem Zink-Katalysator genau passiert, wollen die Wissenschaftler als nächstes herausfinden. Außerdem tüfteln sie jetzt daran, die Ausbeute des hoch erwünschten Stoffs zu steigern: Bei der Reaktion entstehen rund 70 Prozent Moleküle mit einer Boronatgruppe und nur circa 30 Prozent Moleküle mit zwei Boronatgruppen.

Evolution in der Katalyse

Dieser Erfolg ist der vorläufige Höhepunkt einer „Evolution in der Katalyse“, an der Marders Arbeitskreis in den vergangenen Jahren in vorderster Reihe mitgewirkt hat. Die katalysierte Herstellung von Arylboronaten gelang erstmals 1995 mit Palladium in Japan; die entsprechende Reaktion wird nach ihrem „Vater“ als Miyaura-Borylierung bezeichnet.

Arylboronate werden für die Suzuki-Miyaura-Reaktion benötigt, für deren Realisierung Akira Suzuki 2010 den Nobelpreis für Chemie bekam. 2009 gelang es in Marders Arbeitskreis, seinerzeit an der Universität Durham in England, solche Reaktionen mit Kupfer-Katalysatoren ablaufen zu lassen. Kupfer ist ein günstiges Übergangsmetall mit geringer Toxizität.

Shubhankar Kumar Bose, der 2013 als Humboldt-Stipendiat zu Marder nach Würzburg kam, hatte schließlich die Idee, es mit Zink als Katalysator zu versuchen. Die Reaktion klappte 2014 zuerst mit kettenförmigen Molekülen (Alkylboronate) und nun auch mit ringförmigen Boronaten. Das bringt einen weiteren Vorteil: Zink ist noch preisgünstiger als Kupfer und nicht toxisch.

„Simultane Zink-katalysierte C–X- und C–H-Borylierung von Arylhalogeniden“, Shubhankar Kumar Bose, Andrea Deißenberger, Antonius Eichhorn, Patrick G. Steel, Zhenyang Lin, Todd B. Marder. Angewandte Chemie, online publiziert am 18. August 2015, DOI: 10.1002/ange.201505603

Kontakt

Prof. Dr. Todd Marder, Institut für Anorganische Chemie, Universität Würzburg, T (0931) 31-85514, todd.marder@uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie