Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Artensterben als Kettenreaktion

17.06.2014

Im Laufe der Evolution sind in den letzten 500 Millionen Jahren immer wieder Tier- und Pflanzenarten in großer Zahl ausgestorben. Kann bereits das Aussterben weniger oder einzelner Arten zu Kettenreaktionen mit solchen verheerenden Folgen führen?

Göttinger Forscher am Max-Planck-Institut für Dynamik und Selbstorganisation und der ETH Zürich haben eine mathematische Theorie entwickelt, das unter Verwendung von Fossiliendaten eine Antwort geben kann.


Entwicklung der Tier- und Pflanzenfamilien im Meer und an Land in den letzten 600 Millionen Jahren.

MPIDS / Frank Stollmeier

Die Theorie zeigt, dass Kettenreaktionen bei der unterschiedlichen Entwicklung der Artenvielfalt im Meer und an Land eine Rolle gespielt haben können. Sie kann dabei helfen, heutige und zukünftige Artensterben zu verstehen.

Bei den fünf größten Massenaussterben in der Erdgeschichte starben jeweils mehr als drei Viertel aller Arten aus, doch danach erholte sich die Artenvielfalt immer wieder. Als Ursachen werden Katastrophen von globaler Größenordnung vermutet, wie z.B. große Meteoriteneinschläge oder Vulkanausbrüche. Aber zum Glück führte nicht jede Naturkatastrophe im Laufe der Erdgeschichte zu einem Massenaussterben, und umgekehrt werden auch diese nicht nur durch globale Naturkatastrophen hervorgerufen.

Das mathematische Modell der Wissenschaftler geht davon aus, dass Arten entweder auf Grund von geänderten Umweltbedingungen aussterben oder durch das Aussterben bestimmter anderer Arten, die für sie unentbehrlich sind.

Wenn sich beispielsweise das Klima erwärmt oder abkühlt oder wenn sich die durchschnittliche Niederschlagsmenge oder die Bodenbeschaffenheit ändert, sind dadurch Tiere und Pflanzen bedroht, die sich nicht schnell genug anpassen können oder keinen neuen Lebensraum finden.

Wenn dadurch plötzlich einige wichtige Arten fehlen, können andere ebenfalls aussterben, die von ihnen abhängig waren: Das kann geschehen, wenn eine Tierart seine bevorzugte Beute oder Futterpflanze verliert, oder wenn einer Pflanze plötzlich das Insekt fehlt, das sie bestäubt oder der Vogel, der ihre Samen verbreitet.

„Wenn es viele Arten gibt, die von wenigen Arten abhängig sind, ist das Ökosystem instabil. Wenn dann wichtige „Schlüsselarten“ durch veränderte Umweltbedingungen aussterben, kann das eine Kettenreaktion auslösen und zu einem Massenaussterben vieler Arten führen“, erklärt Frank Stollmeier vom Göttinger Max-Planck-Institut. Wenn es dagegen wenige Arten gibt, die von vielen verschiedenen Arten abhängig sind, ist das Ökosystem stabil; veränderte Umweltbedingungen könnten dann zwar viele einzelne Arten auslöschen, aber nicht innerhalb einer großen Kettenreaktion.

Artenvielfalt im Meer und an Land

Damit kann das Modell auch erklären, warum sich die Artenvielfalt im Meer in den letzten 600 Millionen Jahren anders entwickelt hat als auf dem Land: Nachdem die ersten größeren Lebensformen im Meer entstanden waren, stieg die Artenvielfalt dort zunächst stark an und erreichte vor etwa 450 Millionen Jahren einen Wert, den sie für lange Zeit nicht mehr überschritt.

Erst vor etwa 200 Millionen Jahren stieg die Anzahl der Meeresarten nach einem Massenaussterben wieder stark an. An Land dagegen begann der erste Anstieg der Artenvielfalt erst viel später, vor etwa 450 Millionen Jahren. Seitdem ist die kontinentale Artenvielfalt rasant gewachsen und hat die Vielfalt im Meer sogar übertroffen.

Eine zentrale Rolle bei dieser unterschiedlichen Entwicklung spielt in dem Modell das Verhältnis zwischen der Wahrscheinlichkeit, dass eine Art durch Umwelteinflüsse ausstirbt, und der Wahrscheinlichkeit, dass eine neue Art entsteht. Dieses Verhältnis sollte laut dem Modell im Meer höher sein. Eine Analyse von Fossilien-Datenbanken hat in der Tat ergeben, dass Arten im Meer tatsächlich eher aussterben als an Land.

Ein Grund dafür könnte sein, dass es im Meer weniger verschiedene Lebensräume gibt als an Land: „Wenn im Meer eine neue Art entsteht, die nicht ideal an Umwelt angepasst ist, hat sie kaum eine Chance, einen neuen Lebensraum zu finden, in dem sie überleben könnte. An Land ist das eher möglich, da es dort sehr viele unterschiedliche Lebensräume gibt“, erklärt Jan Nagler, der die Studie leitete und jetzt an der ETH Zürich arbeitet. Wenn nun die Aussterbewahrscheinlichkeit deutlich kleiner ist als die Wahrscheinlichkeit, dass neue Arten entstehen, bleibt das Ökosystem stabil und die Artenvielfalt wächst schnell. Im umgekehrten Fall wächst die Artenvielfalt langsamer und das Ökosystem wird häufiger instabil.

Dies erklärt, warum die Artenvielfalt im Meer über so lange Zeit stagnierte. Wahrscheinlich war das Ökosystem dort über eine lange Zeit instabil: Es hatten sich zu viele Arten entwickelt, die von wenigen Schlüsselarten abhängig waren, so dass schon das Aussterben von einigen Arten zu einer fatalen Kettenreaktion führte. Somit wurde die Flora und Fauna anfällig für Massenaussterben, die das Wachstum verhinderten. Erst als das Ökosystem einen stabilen Zustand erreicht hatte, in dem weniger Arten von vielen abhingen, konnte die Vielfalt weiter ansteigen.

Das mathematische Modell wurde zwar entwickelt, um die Entwicklung der Artenvielfalt in der Vergangenheit zu erklären, doch es kann auch dazu beitragen, das heutige oder zukünftige Artensterben besser zu verstehen. Es gibt Anzeichen dafür, dass ein neues Massenaussterben begonnen hat, für das der Mensch wahrscheinlich maßgeblich mit verantwortlich ist. Schon 20 bis 40 Prozent der heute bekannten Arten gelten als vom Aussterben bedroht. Leider weiß man empirisch nur wenig darüber, wie sie voneinander abhängen und welche Folgen das Aussterben einer bestimmten Art auf andere hat. Das mathematische Modell ist daher sehr nützlich, um die Prinzipien des Artensterbens zu verstehen, die auch in der aktuellen Situation wirksam sind.

Weitere Informationen:

http://www.ds.mpg.de/2630099/news_publication_8272598?c=2247 - Webseite des MPIDS
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.228101 - Originalveröffentlichung vom 5.6.2014

Manuela Kuhar | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften