Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Architektur von mTOR-Proteinkomplex offengelegt

18.12.2015

Seit langem ist das Protein TOR – Target of Rapamycin – dafür bekannt, dass es das Wachstum von Zellen steuert und an der Entstehung von Krankheiten wie Krebs und Diabetes beteiligt ist. Forscher vom Biozentrum der Universität Basel haben nun gemeinsam mit Kollegen der ETH Zürich die Struktur des TOR-Komplexes mTORC1 detailreich aufgeklärt. In ihrer aktuellen Publikation, die kürzlich in «Science» veröffentlicht wurde, offenbaren sie dessen einzigartige Architektur.

Vor etwa 25 Jahren entdeckte Prof. Michael Hall am Biozentrum der Universität Basel das Protein «Target of Rapamycin» (TOR). Es ist eines der meistuntersuchten Proteine aus der Familie der Proteinkinasen. Diese Familie vereint wichtige regulatorische Proteine, die zahlreiche Prozesse in der Zelle kontrollieren.


3D-Modell des Proteinkomplexes mTORC1.

Universität Basel, Biozentru

TOR, in Säugetieren mTOR genannt, steuert das Zellwachstum und ist daher an der Entstehung zahlreicher Krankheiten wie Diabetes, Krebs oder neurodegenerativer Krankheiten beteiligt. Einige Medikamente, die mTOR hemmen, wurden bereits zu Therapiezwecken zugelassen, insbesondere zur Behandlung von Krebs und gegen Abstossungsreaktionen bei Organtransplantationen.

Doch trotz der intensiven Erforschung von TOR in den letzten Jahrzehnten scheiterte bislang der Versuch, den Aufbau der Proteinkinase und seiner Partner im Detail aufzuklären. Dies ist nun dem Team von Prof. Timm Maier und Prof. Michael Hall vom Biozentrum der Universität Basel gemeinsam mit Forschern der ETH Zürich gelungen. Kristallographische und elektronenmikroskopische Analysen lieferten noch nie dagewesene Einblicke in die Architektur des Proteinkomplexes mTORC1.

Struktur von mTORC1 aufgeklärt

In der Zelle liegt die Proteinkinase mTOR in zwei strukturell und funktionell unterschiedlichen Proteinkomplexen vor, die auch als mTORC1 und mTORC2 bezeichnet werden. Diese beiden Komplexe sind riesige Strukturen, die neben mTOR aus weiteren Proteinen bestehen. In diesen beiden Konstellationen übt die Proteinkinase verschiedene Funktionen aus. Es kontrolliert das Wachstum und die Grösse von Zellen, regelt den Stoffwechsel und den Energiehaushalt.

mTOR selbst ist eines der grössten Proteine in der Zelle und im Verbund mit anderen Proteinen um noch einiges grösser. Dies macht es so schwierig den Aufbau zu untersuchen. «Durch biochemische Analysen war schon länger bekannt, mit welchen Proteinen mTOR eine Verbindung eingeht», sagt Maier.

«Aber man hatte absolut keine Idee, wie sich die Proteine zusammenfügen.» Den Forschern um Timm Maier ist es nach mehr als drei Jahren gelungen, mTORC1 in einer Qualität herzustellen, die für die hochauflösende Analyse am Kryo-Elektronen¬mikroskop notwendig ist. Gleichzeitig konnten sie mittels Röntgenkristallographie die Struktur des Proteins Raptor, den zweiten Hauptbestandteil von mTORC1, bestimmen.

Proteine im Komplex sind wichtig für Funktion

«Obwohl schon vieles zu mTORC1 bekannt war, brachten unsere Ergebnisse dennoch überraschend Neues zu Tage», so Maier. «Die Architektur des riesigen Proteinkomplexes ist einzigartig. Wir konnten nun zeigen, an welchen Stellen und wie genau die verschiedenen Proteine miteinander interagieren und damit auch, welche Funktionen die einzelnen Partner übernehmen.» So spielen die einzelnen Proteine eine wichtige Rolle bei der Regulation der Aktivität des gesamten Komplexes und damit für die Signalweiterleitung in der Zelle.

Mehr als die Summe seiner Teile

Mit ihrer Studie haben die Forscher die Basis für weitere Untersuchungen gelegt. So kann nun die Funktion jedes einzelnen Proteins im gesamten Komplex genau erforscht werden. «Es ist wenig sinnvoll, sich nur die Einzelteile anzuschauen, denn die Interaktionen aller Proteine in dem Verbund sind entscheidend für dessen Funktion», sagt Maier. «Das Ganze ist weit mehr als nur die Summe seiner Teile.» Eine feine Regulation der mTOR-Aktivität ist äusserst wichtig, denn kleinste Störungen können schwere Konsequenzen nach sich ziehen. So kann eine Fehlregulation zu einer Vielzahl von Erkrankungen führen.

Originalbeitrag

Christopher H.S. Aylett, Evelyn Sauer, Stefan Imseng, Daniel Boehringer, Michael N. Hall, Nenad Ban and Timm Maier
Architecture of Human mTOR Complex 1
Science, published online 17 December 2015.

Weitere Auskünfte

Prof. Dr. Timm Maier, Universität Basel, Biozentrum, Tel. +41 61 267 21 76, E-Mail: timm.maier@unibas.ch

Dr. Katrin Bühler, Universität Basel, Kommunikation Biozentrum, Tel. +41 61 267 09 74, E-Mail: katrin.buehler@unibas.ch

Weitere Informationen:

https://www.unibas.ch/de/Aktuell/News/Research/Architektur-von-mTOR-Proteinkompl...

Katrin Bühler | Universität Basel

Weitere Berichte zu: Behandlung von Krebs Diabetes Krebs Proteine Proteinkinase Zelle mTOR

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik