Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Archaeen mit unerwarteten Eigenschaften entdeckt

20.09.2011
Mikroorganismen spielen eine entscheidende Rolle in den großen Stoffkreisläufen und somit für den Zustand der Erde.

Zu diesen zählen Ammonium-oxidierende Archaeen, deren Häufigkeitsnachweis bislang auf dem Nachweis des amoA-Gens beruhte. Ein Forschungsteam um Michael Wagner, Leiter des Departments für Mikrobielle Ökologie der Universität Wien, hat nun amoA-tragende Archaeen nachgewiesen, die nicht Ammonium oxidieren. Die WissenschafterInnen publizieren ihren überraschenden Befund in der aktuellen Ausgabe der renommierten Zeitschrift "PNAS".

Ohne die Stoffwechselleistungen der kleinsten aller Lebewesen, der Archaea und Bakterien, wäre Leben auf der Erde nicht möglich. Diese Mikroorganismen spielen eine entscheidende Rolle für den Kreislauf der Stickstoffverbindungen in der Biosphäre und damit für den Zustand unseres Planeten. Von besonderer Bedeutung hierbei ist der sogenannte Nitrifikationsprozess, bei dem durch die Aktivität von Mikroben Ammonium über Nitrit zu Nitrat umgewandelt wird.

Labiles Gleichgewicht des Stickstoffkreislaufs

"An dieser Stelle bringt der Mensch über die Freisetzung riesiger Mengen an Abwässer und Dünger den globalen Stickstoffkreislauf aus dem Gleichgewicht", sagt Michael Wagner, Leiter des Departments für Mikrobielle Ökologie der Universität Wien. Um die Folgen dieses Eingriffs besser verstehen zu können, sind Ammonium-oxidierende Mikroorganismen in den letzten Jahren weltweit besonders intensiv erforscht worden. Nachdem vor mehr als einem Jahrhundert die ersten Bakterien mit dieser Fähigkeit entdeckt wurden, stellte sich erst in den vergangenen Jahren heraus, dass auch Archaeen zu dieser Stoffwechselleistung in der Lage sind.

Da MikrobiologInnen viele Vertreter der Ammonium-oxidierenden Archaeen im Labor nicht züchten können, wird ihre Häufigkeit in Umweltproben meist über molekularbiologische Verfahren ermittelt, die auf dem Nachweis des amoA-Gens beruhen. "Bislang gingen alle ExpertInnen davon aus, dass Archaeen, die dieses Gen besitzen, Ammonium oxidieren, da das amoA-Gen für ein Schlüsselenzym dieses Prozesses kodiert", erläutert der Mikrobiologe.

Bisheriger Nachweis reicht nicht

Wagners Forschungsteam gelang es, in Industriekläranlagen in England erstmals amoA-tragende Archaeen nachzuweisen, die nicht Ammonium oxidieren, sondern einen anderen noch unbekannten Stoffwechsel besitzen. "Der vielfach eingesetzte Nachweis archaealer amoA-Gene reicht also nicht aus, um Ammonium-oxidierende Archaeen zu identifizieren. Ergebnisse, die mit diesem Verfahren erhalten wurden – bislang sind dazu weit über 100 wissenschaftliche Publikationen erschienen –, können die Häufigkeit und damit die Bedeutung dieser Organismen für den Stickstoffkreislauf dramatisch überschätzen", konstatiert Wagner.

Veröffentlicht werden diese überraschenden Ergebnisse in der aktuellen Ausgabe der Fachzeitschrift "Proceedings of the National Academy of Sciences". Der Befund wurde durch die Kombination von Modellierung und modernsten molekularbiologischen Methoden zur Einzelzellfunktionsanalyse erhalten. Hierfür arbeitete Wagners Forschungsteam mit Andreas Richter vom Department für Chemische Ökologie und Ökosystemforschung der Universität Wien sowie Arbeitsgruppen aus England, den Niederlanden und Dänemark zusammen.

Publikation
Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Marc Mußmann, Roland Hatzenpichler, Andreas Richter, Anneliese Müller, Holger Daims, Michael Wagner. In: PNAS Online Early Edition, September 19-23, 2011.
DOI: 10.1073/pnas.1106427108
Abstract: http://www.pnas.org/content/early/2011/09/15/1106427108.abstract
Wissenschaftlicher Kontakt
Univ.-Prof. Mag. Dr. Michael Wagner
Leiter des Departments für Mikrobielle Ökologie
Universität Wien
1090 Wien, Althanstraße 14 (UZA I)
T +43-1-4277-543 90
michael.wagner@univie.ac.at
Rückfragehinweis
Mag. Alexander Dworzak
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
M +43-664-602 77-175 31
alexander.dworzak@univie.ac.at

Alexander Dworzak | idw
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics