Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Arbeitsweise von Channelrhodopsin-2 entschlüsselt: Maßanfertigung optogenetischer Werkzeuge möglich

07.01.2015

Mit hoher räumlicher und zeitlicher Präzision haben Forscher die Arbeitsweise des lichtgesteuerten Ionenkanals Channelrhodopsin-2 aufgeklärt.

Dieses Biomolekül kommt in der Optogenetik zum Einsatz, welche es erlaubt, die Aktivität von lebenden Zellen mit Licht zu steuern. „Das von uns entwickelte Modell ermöglicht es, optogenetische Werkzeuge je nach Anwendung maßzuschneidern“, sagt Prof. Dr. Klaus Gerwert vom Lehrstuhl für Biophysik der Ruhr-Universität Bochum. Gemeinsam mit Kollegen der Humboldt-Universität zu Berlin um Prof. Dr. Peter Hegemann berichten die Bochumer in der Zeitschrift „Angewandte Chemie“.


Die Pore des Ionenkanals wird durch das Herausdrehen von Aminosäure E90 geöffnet. Wassermoleküle dringen ein, kippen Helix H2 und öffnen so den durchgängigen Kanal.

© RUB, Grafik: Eisenhauer

Channelrhodopsin-2 revolutionierte die Optogenetik

Das von Peter Hegemann in Grünalgen entdeckte Channelrhodopsin-2 ist das zentrale lichtaktivierbare Kanalprotein in der Optogenetik. Stattet man zum Beispiel Nervenzellen mit diesem Ionenkanal aus, kann man die Kanäle durch Lichteinstrahlung öffnen und die Zellen so aktivieren. „Die Anwendung von Channelrhodopsin-2 in der Optogenetik hat die Neurobiologie in den letzten Jahren revolutioniert“, sagt Klaus Gerwert.

Die Zeitschrift „Nature Methods“ zeichnete das Verfahren 2010 als „Methode des Jahres“ aus. „Allerdings fehlte bislang die Kenntnis darüber, was im Protein tatsächlich passiert und letztlich zu dessen Aktivierung führt“, so der Bochumer Forscher weiter. Aber gerade das Verständnis der Vorgänge auf atomarer Ebene ist essenziell, um das Protein für seine Anwendung gezielt zu optimieren.

„EHT“-Modell beschreibt die Arbeitsweise von Channelrhodopsin-2

Mit zeitaufgelöster Vibrationsspektroskopie und biomolekularen Simulationen schloss das Bochumer-Berliner Team nun diese Wissenslücke. Das EHT (E90-Helix2-tilt)-Modell beschreibt die Arbeitsweise von Channelrhodopsin-2 wie folgt: Die lichtempfindliche Gruppe des Proteins, das Retinal, wird bei Lichteinfall verdrillt. Diese Verdrillung setzt sich dann im Protein fort und öffnet extrem schnell eine Pore, die im Dunkeln von der Aminosäure E90 verschlossen wird.

E90 markiert die engste Stelle der Pore und öffnet diese durch Herausklappen, ähnlich der Bewegung einer Schwingtür, so dass Wasser in ein leeres Vestibül oberhalb der engsten Stelle der Pore eindringen kann. Das eindringende Wasser kippt dann die Proteinhelix H2. Das führt dazu, dass sich ein Protein durchspannender, offener Ionenkanal ausbildet. Beim Erstellen dieses Modells profitierten die Bochumer Forscher von ihren umfangreichen Erfahrungen, die sie gewannen, als sie den Mechanismus der lichtgetriebenen Protonenpumpe Bakteriorhodopsin im Detail aufklärten.

„Protein engineering“: Wegbereiter für neue optogenetische Werkzeuge

„Mit diesem Strukturmodell ist nun der nächste Schritt, das protein engineering möglich“, erklärt Klaus Gerwert. Durch Mutation der Aminosäure E90 lassen sich die Eigenschaften des Proteins gezielt beeinflussen. Die Leitfähigkeit oder die Selektivität für gewisse Ionen kann so auf bestimmte Anwendungen maßgeschneidert und das Protein gezielt mit verschiedenen Wellenlängen aktiviert werden.

Titelaufnahmen

J. Kuhne, K. Eisenhauer, E. Ritter, P. Hegemann, K. Gerwert, F. Bartl (2014): Early Formation of the Ion-Conducting Pore in Channelrhodopsin-2, Angewandte Chemie International Edition, DOI: 10.1002/anie.201410180

J. Kuhne, K. Eisenhauer, E. Ritter, P. Hegemann, K. Gerwert, F. Bartl (2014): Die frühe Entstehung der ionenleitenden Pore in Channelrhodopsin-2, Angewandte Chemie, DOI: 10.1002/ange.201410180

Weitere Informationen

Prof. Dr. Klaus Gerwert, Lehrstuhl Biophysik, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24461, E-Mail: gerwert@bph.rub.de

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie