Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Arbeitsweise von Channelrhodopsin-2 entschlüsselt: Maßanfertigung optogenetischer Werkzeuge möglich

07.01.2015

Mit hoher räumlicher und zeitlicher Präzision haben Forscher die Arbeitsweise des lichtgesteuerten Ionenkanals Channelrhodopsin-2 aufgeklärt.

Dieses Biomolekül kommt in der Optogenetik zum Einsatz, welche es erlaubt, die Aktivität von lebenden Zellen mit Licht zu steuern. „Das von uns entwickelte Modell ermöglicht es, optogenetische Werkzeuge je nach Anwendung maßzuschneidern“, sagt Prof. Dr. Klaus Gerwert vom Lehrstuhl für Biophysik der Ruhr-Universität Bochum. Gemeinsam mit Kollegen der Humboldt-Universität zu Berlin um Prof. Dr. Peter Hegemann berichten die Bochumer in der Zeitschrift „Angewandte Chemie“.


Die Pore des Ionenkanals wird durch das Herausdrehen von Aminosäure E90 geöffnet. Wassermoleküle dringen ein, kippen Helix H2 und öffnen so den durchgängigen Kanal.

© RUB, Grafik: Eisenhauer

Channelrhodopsin-2 revolutionierte die Optogenetik

Das von Peter Hegemann in Grünalgen entdeckte Channelrhodopsin-2 ist das zentrale lichtaktivierbare Kanalprotein in der Optogenetik. Stattet man zum Beispiel Nervenzellen mit diesem Ionenkanal aus, kann man die Kanäle durch Lichteinstrahlung öffnen und die Zellen so aktivieren. „Die Anwendung von Channelrhodopsin-2 in der Optogenetik hat die Neurobiologie in den letzten Jahren revolutioniert“, sagt Klaus Gerwert.

Die Zeitschrift „Nature Methods“ zeichnete das Verfahren 2010 als „Methode des Jahres“ aus. „Allerdings fehlte bislang die Kenntnis darüber, was im Protein tatsächlich passiert und letztlich zu dessen Aktivierung führt“, so der Bochumer Forscher weiter. Aber gerade das Verständnis der Vorgänge auf atomarer Ebene ist essenziell, um das Protein für seine Anwendung gezielt zu optimieren.

„EHT“-Modell beschreibt die Arbeitsweise von Channelrhodopsin-2

Mit zeitaufgelöster Vibrationsspektroskopie und biomolekularen Simulationen schloss das Bochumer-Berliner Team nun diese Wissenslücke. Das EHT (E90-Helix2-tilt)-Modell beschreibt die Arbeitsweise von Channelrhodopsin-2 wie folgt: Die lichtempfindliche Gruppe des Proteins, das Retinal, wird bei Lichteinfall verdrillt. Diese Verdrillung setzt sich dann im Protein fort und öffnet extrem schnell eine Pore, die im Dunkeln von der Aminosäure E90 verschlossen wird.

E90 markiert die engste Stelle der Pore und öffnet diese durch Herausklappen, ähnlich der Bewegung einer Schwingtür, so dass Wasser in ein leeres Vestibül oberhalb der engsten Stelle der Pore eindringen kann. Das eindringende Wasser kippt dann die Proteinhelix H2. Das führt dazu, dass sich ein Protein durchspannender, offener Ionenkanal ausbildet. Beim Erstellen dieses Modells profitierten die Bochumer Forscher von ihren umfangreichen Erfahrungen, die sie gewannen, als sie den Mechanismus der lichtgetriebenen Protonenpumpe Bakteriorhodopsin im Detail aufklärten.

„Protein engineering“: Wegbereiter für neue optogenetische Werkzeuge

„Mit diesem Strukturmodell ist nun der nächste Schritt, das protein engineering möglich“, erklärt Klaus Gerwert. Durch Mutation der Aminosäure E90 lassen sich die Eigenschaften des Proteins gezielt beeinflussen. Die Leitfähigkeit oder die Selektivität für gewisse Ionen kann so auf bestimmte Anwendungen maßgeschneidert und das Protein gezielt mit verschiedenen Wellenlängen aktiviert werden.

Titelaufnahmen

J. Kuhne, K. Eisenhauer, E. Ritter, P. Hegemann, K. Gerwert, F. Bartl (2014): Early Formation of the Ion-Conducting Pore in Channelrhodopsin-2, Angewandte Chemie International Edition, DOI: 10.1002/anie.201410180

J. Kuhne, K. Eisenhauer, E. Ritter, P. Hegemann, K. Gerwert, F. Bartl (2014): Die frühe Entstehung der ionenleitenden Pore in Channelrhodopsin-2, Angewandte Chemie, DOI: 10.1002/ange.201410180

Weitere Informationen

Prof. Dr. Klaus Gerwert, Lehrstuhl Biophysik, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24461, E-Mail: gerwert@bph.rub.de

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops