Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Arbeitsteilung bei Proteinen – Die Rolle der Zentromer-Proteine bei der Zellteilung

21.07.2011
Das Zentromer, ein spezieller Abschnitt auf jedem Chromosom, spielt bei der Zellteilung eine wichtige Rolle und sorgt im Komplex mit Proteinen dafür, dass jede Tochterzelle nach der Teilung eine komplette Kopie von allen Chromosomen besitzt.

Die Struktur und Zusammensetzung dieses Multiproteinkomplexes wurde von Forschern des Leibniz-Instituts für Altersforschung – Fritz-Lipmann-Institut in Jena und Kollegen des Centre for Chromosome Biology in Galway, Irland untersucht.

Sie wiesen einen sehr dynamischen Komplex nach, der sich zellzyklus-spezifisch an die jeweiligen Erfordernisse in Struktur und Zusammensetzung anpasst. (PLoS Biol. 2011;9(6):e1001082. doi:10.1371/journal.pbio.1001082)

Der biologische Prozess der Zellteilung (Mitose) gewährleistet das Wachstum und die Fortpflanzung aller Lebewesen; bis ins hohe Alter werden neue Zellen gebildet und abgestorbene ersetzt. Durch ein genau festgelegtes inneres Programm wird dabei sichergestellt, dass die Zellen korrekt vervielfältigt werden und aus einer Zelle je zwei neue, identische Zellen entstehen. Treten bei der Teilung jedoch Störungen auf, können durch unkontrolliertes Wachstum leicht Wucherungen, Geschwüre oder Tumore (Krebs) entstehen.

Die genetische Information, die auf der DNA und somit auf den Chromosomen gespeichert ist, wird bei der Zellteilung über viele Generationen hinweg von der Mutterzelle auf die Tochterzellen übertragen. Das Zentromer, ein besonderer Abschnitt auf jedem Chromosom (eingeschnürter Bereich; Taille), spielt dabei eine Schlüsselrolle. Im Komplex mit speziellen Proteinen (Zentromer-Proteine; engl. centromere proteins, CENPs) sorgt es unter anderem dafür, dass nach der Teilung jede Tochterzelle eine komplette Kopie von allen Chromosomen besitzt. Bisher weiß man, dass dieser Multiproteinkomplex bei der Verdopplung der DNA und bei der Teilung von Zelle zu Zelle weitergegeben wird. Über die genaue Struktur und Zusammensetzung des Komplexes während des Teilungsprozesses gab es bis dato keine Angaben.

Forscher des Leibniz-Instituts für Altersforschung - Fritz-Lipmann-Institut (FLI) in Jena und des Centre for Chromosome Biology in Galway, Irland haben nun während des Zellzyklus die Struktur und Zusammensetzung des Zentromer-Protein-Komplexes in lebenden Zellen genauer erforscht. Sie analysierten, wann welche Proteine am Zentromer vorhanden sind, ob sie dort eingebaut werden und ob bzw. wann sie wieder das Zentromer verlassen. Ihre Ergebnisse sind in dem renommierten Journal "PLoS Biology" veröffentlicht (PLoS Biol. 2011;9(6):e1001082.doi:10.1371/journal.pbio.1001082).

"Bereits seit längerem ist bekannt, dass die Zentromere nicht ausschließlich durch die DNA gebildet werden, sondern vielmehr die assoziierten Zentromer-Proteine, die CENPs, die Anordnung der Zentromere auf jedem Chromosom veranlassen. Wie dieses "Wissen" aber mit ausreichender Präzision und Stabilität bei der Zellteilung über mehrere Generationen hinweg vererbt werden kann, war bis dato ein Geheimnis", berichtet Prof. Stephan Diekmann, Leiter der Arbeitsgruppe Molekularbiologie am FLI. "Deshalb haben wir uns in lebenden Zellen die CENPs einmal genauer angeschaut", informiert Prof. Diekmann weiter. "Durch Markierung mit Fluoreszenzfarbstoffen konnten wir die Verdopplung der Chromosomen unter dem Mikroskop direkt beobachten und verfolgen, welche Effekte das Entfernen von Schlüsselproteinen auf die Chromosomenbewegung in den Zellen und damit auf die präzise Verteilung auf die Tochterzellen hat".

"Umso erstaunter waren wir, als wir bei den Proteinen Hinweise für eine Arbeitsteilung entdeckten", freut sich Dr. Christian Hoischen, Mitarbeiter in der Arbeitsgruppe Diekmann. Das als CENP-A bekannte Schlüsselprotein befindet sich konstitutiv am Zentromer und ist ein epigenetischer Marker ("Schalter", der Gene und die Funktion von DNA-Abschnitten an- oder ausknipsen kann) für die Lage des Zentromers auf dem Chromosom, d.h. es "vererbt" die Position des Zentromers. Die molekularen Verwandten CENP-T und CENP-W, die gemeinsam einen Subkomplex bilden, sind nicht konstitutiv an das Zentromer gebunden, sondern werden erst am Ende der Zellzyklusphase, in der die DNA verdoppelt wird, in das Zentromer eingebaut. Dort befinden sie sich dann in der Nähe von CENP-A. Offensichtlich bilden sie am Zentromer eine Struktur aus, die eine wichtige Rolle bei der Verteilung der Schwesterchromatiden auf die Tochterzellen spielt. "Das Zentromer ist in seiner Zusammensetzung und Struktur also ein wesentlich dynamischerer Komplex als wir bisher angenommen haben und passt sich offenbar zellzyklus-spezifisch an die jeweiligen Erfordernisse während der Zellteilung an", so Dr. Hoischen weiter.

"Unsere Forschungsergebnisse bieten damit nicht nur neue Aspekte für die Grundlagenforschung, sondern sind auch für die Behandlung von Krebserkrankungen relevant", unterstreichen Prof. Diekmann und Dr. Hoischen. Die für die Zellteilung essentiellen Zentromer-Proteine sind mögliche Targets für Chemotherapien. CENP-A wird bereits jetzt als potentielles Target für die Behandlung bestimmter Krebserkrankungen angesehen.

Kontakt:

Dr. Kerstin Wagner
Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI)
Beutenbergstr. 11, 07745 Jena
Tel.: 03641-656378, Fax: 03641-656335, E-Mail: koordinator@fli-leibniz.de
Originalpublikation:
Prendergast L, van Vuuren C, Kaczmarczyk A, Doering V, Hellwig D, Quinn N, Hoischen C, Diekmann S, Sullivan KF: Premitotic assembly of human CENPs -T and -W switches centromeric chromatin to a mitotic state. PLoS Biol. 2011, 9(6), e1001082. DOI: 10.1371/journal.pbio.1001082.

Hintergrundinfo

Das Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI) in Jena ist das erste deutsche Forschungsinstitut, das sich seit 2004 der biomedizinischen Altersforschung widmet. Über 330 Mitarbeiter aus 25 Nationen forschen zu molekularen Mechanismen von Alterungsprozessen und altersbedingten Krankheiten. Näheres unter http://www.fli-leibniz.de.

Zur Leibniz-Gemeinschaft gehören zurzeit 87 Forschungsinstitute und Serviceeinrichtungen für die Forschung sowie drei assoziierte Mitglieder. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Leibniz-Institute arbeiten strategisch und themenorientiert an Fragestellungen von gesamtgesellschaftlicher Bedeutung. Bund und Länder fördern die Institute der Leibniz-Gemeinschaft daher gemeinsam. Näheres unter http://www.leibniz-gemeinschaft.de.

Friedrich-Schiller-Universität Jena (FSU): Näheres unter http://www.uni-jena.de

Dr. Kerstin Wagner | idw
Weitere Informationen:
http://www.fli-leibniz.de
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise