Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Antikörpern die Alzheimer-Krankheit erforschen

07.06.2010
Mit neuen gentechnologischen Methoden wollen Forscher der Technischen Universität Braunschweig und der École Polytechnique Fédérale de Lausanne, Schweiz, die Alzheimer-Erkrankung erforschen.

Ihr Ziel ist es, die molekulare Struktur derjenigen Eiweiße, die an der Erkrankung beteiligt sind, genauer als bisher zu untersuchen. Prof. Stefan Dübel, Leiter der Abteilung Biotechnologie des Braunschweiger Instituts für Biochemie und Biotechnologie und sein Team entwickeln dazu spezielle Antikörper. Sie kommen als molekulare Designer-Sonden zum Einsatz. In Lausanne werden sie im Laborversuch getestet. Das Projekt wird von der renommierten Alzheimer's Association gefördert.

Jeder menschliche oder tierische Körper verfügt über eine sehr hohe Zahl von unterschiedlichen Antikörpern. Von Natur aus für die Abwehr unbekannter Infektionen erschaffen, können sie beinahe jedes Molekül, das von außen in den Körper eindringt, binden und dadurch unschädlich machen. Wissenschaftler nutzen dieses natürliche Potenzial seit langem. Die Braunschweiger Forscher stellen Antikörper so her, dass diese ein einzelnes menschliches Eiweiß im Organismus aufspüren können, damit dessen Rolle im Organismus im Labor genau studiert werden kann. Dazu haben ein Verfahren perfektioniert, mit dem man Antikörper komplett ohne Versuchstiere im Reagenzglas entwickeln kann.

„Die Antikörper ermöglichen in diesem Projekt, bestimmte Proteine besser zu verstehen, die bei der Entstehung von Alzheimer eine Rolle spielen“, erläutert Prof. Dübel. „Sie funktionieren als Sonden, die es uns erlauben, kleinste Unterschiede in der molekularen Struktur dieser Eiweiße aufzuspüren und damit mehr über deren Rolle bei der Krankheitsentstehung zu erfahren.“

Eine Frage des „Faltenwurfs“

Proteine können eine sehr komplexe Struktur haben. Eiweiße gleicher chemischer Zusammensetzung können unterschiedliche räumliche Strukturen bilden, sich also unterschiedlich falten. Ein Protein, das im gesunden Organismus unschädlich ist, kann sich gleichsam wie ein Pullover „auf links“ umdrehen und dann die Erkrankung auslösen. Es ist also wichtig, die Faltung genau nachvollziehen zu können. Bisher war dies schwer, da in konventionellen Verfahren Antikörper zum Einsatz kamen, die in Versuchstieren erzeugt wurden. Dabei ließ sich nicht steuern, welche Faltung erkannt wurde. „Unsere Ansatz ist es, dass wir Antikörper-Sonden ausschließlich im Reagensglas aus Bakterien herstellen. Dabei lässt sich genau vorbestimmen, welche Version der Faltung des Eiweißes unsere Antikörper erkennen – und damit besser beobachten, wann und wie sich die Faltung verändert, wenn die Krankheit ausgelöst wird“, erläutert Prof. Dübel. Die Projektgruppe hofft, auf diese Weise mehr über die Entstehung und den Verlauf der Erkrankung zu erfahren. Damit würden neue Schritte in Richtung Diagnose und Therapie ermöglicht.

Im Rahmen des Projekts findet auch ein Austausch von Nachwuchswissenschaftlerinnen und -wissenschaftlern mit dem jeweiligen Partnerinstitut statt.

Weitere Informationen:
Technische Universität Braunschweig
Institut für Biochemie und Biotechnologie
Prof. Dr. Stefan Dübel
Spielmannstr. 7
38106 Braunschweig
Tel.: +49 531 531 391 5731
E-Mail: biotech@tu-braunschweig.de

Dr. Elisabeth Hoffmann | idw
Weitere Informationen:
http://www.tu-braunschweig.de/bbt
http://rzv054.rz.tu-bs.de/Biotech/index.html

Weitere Berichte zu: Antikörper Biochemie Biotechnologie Dübel Eiweiß Faltung Organismus Protein Versuchstier

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie