Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Antibiotika-Alternative: Mit Viren gegen Bakterien

25.07.2014

Röntgenuntersuchung zeigt, wie Bakteriophagen die bakterielle Zellwand angreifen

Eine Untersuchung an DESYs Röntgenring PETRA III zeigt, wie spezielle Viren den lebensbedrohlichen Durchfallkeim Clostridium difficile abtöten.


Ein Clostridium-difficile-Bakterium unter dem Elektronenmikroskop.

Bild: Jennifer Hulsey/CDC


Die untersuchten Bakteriophagen unter dem Elektronenmikroskop.

Bild: Kathryn Cross/IFR

Die Studie von Forschern der Hamburger Niederlassung des Europäischen Laboratoriums für Molekularbiologie, EMBL, enthüllt, wie bestimmte Enzyme dieser Viren ausgeschüttet werden, um die Zellwand der Bakterien aufzulösen. Die Arbeit eröffnet neue Möglichkeiten für die Entwicklung von Therapien mit sogenannten Bakteriophagen, also auf Bakterien spezialisierten Viren, wie das Team um EMBL-Gruppenleiter Rob Meijers im Fachjournal „PLoS Pathogens" schreibt.

„Angesichts wachsender Antibiotikaresistenzen können Bakteriophagen und ihre Enzyme eine vielversprechende Alternative bieten", erläutert Meijers. „Unsere Ergebnisse können uns helfen, wirkungsvolle, spezialisierte Bakteriophagen zu entwickeln, nicht nur für Infektionen mit Clostridium difficile, sondern für ein breites Spektrum von Bakterien, die für Gesundheit, Landwirtschaft und Lebensmittelindustrie von Bedeutung sind."

Bakteriophagen sind Viren, die Bakterien infizieren und zerstören, ohne andere Organismen anzugreifen. Sie wurden bereits vor mehr als einem Jahrhundert als Behandlungsmöglichkeit für bakterielle Infektionen entdeckt. Mit Einführung der Antibiotika schwand jedoch das Interesse an den medizinisch schwieriger anzuwendenden Bakteriophagen. Durch die zunehmenden Antibiotikaresistenzen erlebt die Forschung an Bakteriophagen derzeit jedoch einen Aufschwung.

Das Bakterium Clostridium difficile wird wegen zunehmender Resistenzen in vielen Kliniken und anderen Gesundheitseinrichtungen zu einem ernsthaften Problem. Es kann lebensgefährliche Durchfälle auslösen, insbesondere bei Patienten, die aus anderen Gründen eine Breitspektrum-Antibiotikatherapie erhalten. Clostridium difficile gehört zur normalen menschlichen Darmflora und ist für gesunde Menschen unproblematisch.

Bei einer Behandlung mit Antibiotika wird jedoch ein Großteil der normalen Darmflora abgetötet, so dass sich die widerstandfähigeren Clostridium-difficile-Keime unter Umständen unkontrolliert vermehren können, was zu Komplikationen wie schweren Fällen von Durchfall führen kann. Die gemeldete Zahl solcher schweren Verläufe hat sich nach Daten des Berliner Robert Koch-Instituts von 2008 bis 2013 in Deutschland verdreifacht.

Diese Fälle sind oft schwer zu behandeln, weil die Durchfallkeime auf viele Antibiotika nicht mehr ansprechen. Eine mögliche Behandlungsalternative wären Bakteriophagen. Diese Viren dringen in Bakterienzellen ein und vermehren sich, bis die Zelle aufbricht und frische Bakteriophagen ausschüttet.

Im Gegensatz zu Antibiotika sind Bakteriophagen hochspezialisiert auf das Ziel, das sie angreifen. Allerdings sind sie schwer zu kontrollieren, und auch gegen Bakteriophagen können Bakterien rasch Resistenzen entwickeln. Für die Entwicklung einer wirksamen Therapie mit Bakteriophagen müssen Forscher daher den Lebenszyklus dieser Viren noch genauer verstehen - insbesondere, wie die Viren die Zellwand der Bakterien zerstören. Zwar ist bekannt, dass die Bakteriophagen dazu Enzyme namens Endolysine produzieren. Wie diese Enzyme jedoch aktiviert werden, ist ein fehlender wichtiger Stein des Puzzles.

Mit dem intensiven Röntgenlicht von DESYs Forschungslichtquelle PETRA III haben die Wissenschaftler nun einen Aktivierungsmechanismus von Endolysinen entdeckt, die Bakterien der Gattung Clostridium angreifen. „Diese Enzyme scheinen von einer gestreckten, unter Spannung stehenden Form, bei der je ein Paar von Endolysinen verknüpft ist, zu einem gelösten Zustand umzuschalten, in dem beide Endolysine Seite an Seite liegen", erläutert EMBL-Forscher Matthew Dunne.

„Das Umschalten von einem Zustand zum anderen setzt das Enzym frei, das dann beginnt, die bakterielle Zellwand abzubauen." Sobald die Zellwand anfängt zusammenzubrechen, kann die Bakterienzelle dem inneren Druck nicht mehr standhalten, explodiert und setzt die neuen Bakteriophagen frei, die wiederum weitere Bakterienzellen infizieren.

Gemeinsam mit Melinda Mayer und Arjan Narbad vom britischen Institut für Lebensmittelforschung in Norwich haben die Wissenschaftler zwei unterschiedliche Endolysine verglichen: Eines von Bakteriophagen, die Clostridium difficile angreifen, und ein anderes, das die Zellwand von Clostridia-Keimen verdaut, die Probleme in der Käseproduktion verursachen. Mit Röntgenkristallographie und weiteren Techniken der Strukturbiologie konnten die Forscher an der EMBL-Messstation auf dem Hamburger DESY-Campus die dreidimensionale Struktur der Enzyme bestimmen und so auf ihre Funktionsweise schließen.

„Bemerkenswerterweise konnten wir beobachten, dass beide Endolysine einen gemeinsamen Aktivierungsmechanismus besitzen", berichtet Dunne. Daraus folgern die Forscher, dass der Übergang vom gespannten zum gelösten Zustand wahrscheinlich eine häufige Taktik ist. Diese Erkenntnis könnte möglicherweise dazu dienen, weitere Viren zu Verbündeten im Kampf gegen andere antibiotikaresistente Bakterien zu machen.

Originalveröffentlichung
„The CD27L and CTP1L endolysins targeting Clostridia contain a built-in trigger and release factor”, Matthew Dunne, Haydyn D. T. Mertens, Vasiliki Garefalaki, Cy M. Jeffries, Andrew Thompson, Edward A. Lemke, Dmitri I. Svergun, Melinda J. Mayer, Arjan Narbad and Rob Meijers
„PLoS Pathogens", 2014
DOI: 10.1371/journal.ppat.1004228

Weitere Informationen:

http://www.desy.de/e428/e548/e4802/e167391/e177796/ - Meldung mit Bildern

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen
22.06.2017 | Heinrich-Heine-Universität Düsseldorf

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie