Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Anti-Angst-Hormon Oxytocin wird gezielt an seine Wirkorte im Gehirn transportiert

08.02.2012
Wissenschaftler beobachten, wie Oxytocin zentrale Schaltstellen im Gehirn erreicht und das Verhalten beeinflusst

Kuschelhormon, Treuehormon, Angstlöser – häufig gebrauchte Schlagwörter für das Neuropeptid Oxytocin, das sich in den letzten Jahren als ein Stoff erwiesen hat, der unser Verhalten in zentralen Regionen des Gehirns positiv beeinflussen kann. Was jedoch bisher völlig unklar war: Wie gelangt dieser Botenstoff aus dem Hypothalamus in die Hirnbereiche, die unsere Gefühle und Reaktionen im sozialen Miteinander kontrollieren?


Oxytocin-produzierende Nervenzellen im Hypothalamus (rot und grün). Vasopressin-bildende Zellen sind blau gefärbt. © MPI für medizinische Forschung

Wissenschaftler am Max-Planck-Institut für medizinische Forschung in Heidelberg und am Schweizer Zentrum für psychiatrische Neurowissenschaften in Lausanne konnten die weit reichenden Ausläufer von Oxytocin produzierenden Neuronen im Rattengehirn bis zu ihren Zielorten verfolgen. In der Amygdala dämpft eine gezielte Oxytocin-Ausschüttung die Angstreaktion.

Oxytocin ist gut erforscht als ein Hormon, das den Geburtsprozess und den Milchfluss kontrolliert. Darüber hinaus beeinflusst es die Bindung zwischen Mutter und Kind und, so das Ergebnis neuerer Studien, auch ganz allgemein soziale Verhaltensweisen wie Vertrauen in Mitmenschen, Treue oder auch Angstverhalten. Das Neuropeptid wird in Neuronen des Hypothalamus, des Steuerzentrums unseres vegetativen Nervensystems, gebildet und gelangt zum einen über Nervenzellausläufer zur Hirnanhangsdrüse (Hypophyse), in der es zwischengespeichert und bei Bedarf in das Blut abgegeben wird. Über das Blut erreicht das Hormon Zielorgane wie die Gebärmutter oder die Milchdrüsen.

Doch wie gelangt das Oxytocin in die zentralen Bereiche des Gehirns, die das Verhalten beeinflussen können, wie beispielsweise den Mandelkern (Amygdala), in dem Angst und Stress gesteuert werden? Die vorherrschende Hypothese, dass das Hormon von den Nervenzellen im Hypothalamus über die Dendriten freigesetzt wird und über Diffusion in die zentralen Hirnbereiche gelangt, hat sich in der aktuellen Studie nicht bestätigt.

„Wir konnten in Gehirnschnitten erkennen, dass das Oxytocin aus den Neuronen des Hypothalamus über verzweigte und weit reichende Axone gezielt an die Wirkorte transportiert wird, wo es dann lokal abgegeben wird“, erklärt Peter H. Seeburg, Leiter der Molekularen Neurobiologie am Max-Planck-Institut für medizinische Forschung. „Darüber hinaus konnten wir mit Verhaltenstests zeigen, dass das lokal ausgeschüttete Hormon in der Amygdala tatsächlich eine Angst mindernde Reaktion auslöst.“

Für ihre Studien nutzten die Wissenschaftler eine Kombination von Methoden: Anatomische, elektrophysiologische und optische Verfahren kamen ebenso zum Einsatz wie Verhaltenstests. Die Forscher machten im lebenden Tier die Oxytocin-produzierenden Nervenzellen (OT-Neuronen) und ihre Ausläufer mit dem lichtempfindlichen Protein Channelrhodopsin sichtbar. „Das Besondere an Channelrhodopsin besteht darin, dass es durch Blaulicht eingeschaltet die Nervenzelle aktiviert“, erklärt der Gruppenleiter Valery Grinevich die ausgeklügelte Methode. Um diesen Lichtschalter zu nutzen, haben die Forscher das Gen für Channelrhodopsin und ein fluoreszierendes Protein spezifisch in OT-Neurone eingebracht. So können diese Nervenzellen und ihre Ausläufer über Fluoreszenzmikroskopie beobachtet und durch Blaulicht aktiviert werden.

In Gehirnschnitten konnten die Wissenschaftler nicht nur den Weg aufzeigen, den das Oxytocin nimmt, sondern auch erkennen, dass das lokal freigesetzte Oxytocin über den Neurotransmitter GABA (Gamma-Aminobuttersäure) einen hemmenden Einfluss auf Nervenzellen der Amgydala ausübt. Im lebenden Tier aktivierten die Forscher über Blaulicht ganz gezielt in der Amygdala die Ausschüttung von Oxytocin, und konnten so eine zuvor ausgelöste Angststarre bei Ratten direkt lösen.

Die Wissenschaftler fanden die Axone von OT-Neuronen des Hypothalamus nicht nur in der Amygdala, sondern in vielen Regionen des basalen Vorderhirns. Gibt es also einen Schaltplan im Gehirn, nach dem die Neuronen das vielseitige Hormon an die verschiedenen Wirkorte senden? Unklar ist auch noch, wann das Oxytocin den Weg über die Hypophyse ins Blut nimmt und wann es über die Axone und deren Verzweigungen gezielt in die Gehirnregionen gelangt, die unser Verhalten steuern?

Mit den neuen OT-Neuronen-spezifischen Genkonstrukten haben die Wissenschaftler erstmals ein Werkzeug zur Hand, mit dem das Oxytocin und seine Wirkungen auf Verhaltensweisen in verschiedenen Gehirnregionen gezielt analysiert werden kann. Dies kann auch wichtige Ergebnisse für die Verhaltenstherapie mit sich bringen. Schon jetzt versuchen andere Wissenschaftler, das Hormon in Form von Nasensprays einzusetzen, um Verhalten positiv zu beeinflussen. Grinevich ist in dieser Hinsicht noch skeptisch: „Es gibt bisher keinen Beweis dafür, dass Oxytocin auf diesem einfachen Weg ins Gehirn gelangt. “Eine Substanz wie die aus dem Sommernachtstraum von Shakespeare, die in Augen oder Nase geträufelt, die Liebe entfacht, dürfte wohl erst mal eine Fiktion bleiben.

Ansprechpartner

MD, PhD Valerie Grinevich
Telefon: +49 62 2148-6174
Fax: +49 62 2148-6110
E-Mail: Valery.Grinevich@mpimf-heidelberg.mpg.de
Originalpublikation
H. Sophie Knobloch, Alexandre Charlet, Lena C. Hoffmann, Marina Eliava, Sergey Krulev, Ali H. Cetin, Pavel Osten, Martin K. Schwarz, Peter H. Seeburg, Ron Stoop, und Valery Grinevich
Evoked axonal oxytocin release in the central amygdala attenuates fear response.
Neuron, February 9, 2012

Valerie Grinevich | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5018735/oxytocin_gehirn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie