„Anstandsdamen“ leiten Proteine sicher ans Ziel

Eine frisch synthetisierte Proteinkette ist empfindlich wie ein neugeborenes Baby. Würde sie nicht von molekularen „Anstandsdamen“, den Chaperon-Proteinen, in Empfang genommen und vor unerwünschten Kontakten im ungeheuer dicht bevölkerten Zytosol der Zelle geschützt, könnte sie sich nicht in die korrekte dreidimensionale Struktur falten.

Chaperone „behüten“ aber nicht nur Proteine, sondern bringen sie auch sicher an ihren Bestimmungsort und sorgen für den Einbau in die Membran der Zielstruktur. Wie das im Detail funktioniert, hat jetzt ein internationales Team unter Beteiligung der Goethe-Universität anhand einer bestimmten Proteinfamilie herausgefunden. Weil diese Proteine über eine Art Korkenzieher-Struktur in den Zellmembranen verankert sind, werden sie als „tail anchored“ (TA) bezeichnet.

Den Schlüssel zur korrekten Sortierung von Proteinen bilden Signalsequenzen, die von den Chaperonen erkannt werden. Sind sie mit ihren „Schützlingen“ am Bestimmungsort angelangt, sorgt die Wechselwirkung mit spezifischen Rezeptoren in der Zielmembran dafür, dass die neu angelangten Proteine in die Membran eingebaut werden. Bei den TA-Proteinen sind die Komponenten, die für Sortierung und Membraninsertion verantwortlich sind, vor kurzem identifiziert worden.

Weitgehend unbekannt war bisher aber, wie dieses Sortiersystem auf molekularer Ebene funktioniert. An der interdisziplinären Studie, die in der aktuellen Online-Ausgabe der Fachzeitschrift „Science“ erscheint, waren die Arbeitsgruppen von Prof. Volker Dötsch (Goethe-Universität Frankfurt am Main), Prof. Irmgard Sinning (Biochemie-Zentrum der Universität Heidelberg) und Prof. Vlad Denic (Harvard University, USA) beteiligt. Sie lösten das Rätsel durch eine Kombination unterschiedlicher experimenteller Zugänge: So kamen die Proteinkristallographie und die NMR-Spektroskopie zum Einsatz sowie biochemische und zellbiologische Ansätze.

In detaillierten biophysikalischen Studien konnte die Frankfurter Gruppe von Volker Dötsch zeigen, wie das zentrale Chaperon des verantwortlichen Proteinkomplexes, Get3 genannt, sowohl die Bindung von TA-Proteinen im Zytosol als auch deren Freigabe an der Membran reguliert. Beim Einbau in die Zielmembran helfen die beiden Rezeptorproteine Get1 und Get2. Sie nutzen eine teilweise überlappende Bindestelle an der Get3-ATPase. Anhand verschiedener Kristallstrukturen, die unterschiedliche Zustände des Get3-Rezeptor-Komplexes darstellen, konnten die Forscher auch rekonstruieren, wie der Einbau des TA-Proteins in die Zielmembran abläuft.

Get3 ist ein Dimer aus zwei Protein-Untereinheiten, das sich bei Bindung an den Membranrezeptor schrittweise öffnet und dadurch eine kontrollierte Insertion des TA-Proteins ermöglicht. „Wichtig sind diese Ergebnisse vor allem deshalb, weil wir ein erstes Modell der rezeptor-assistierten Membraninsertion erstellen konnten, das jetzt die Grundlage für weitere Studien bildet“, erläutert Dötsch.

Informationen: Prof. Volker Dötsch, Institut für Biophysikalische Chemie, Campus Riedberg, Tel: (069) 798-29631, vdoetsch@em.uni-frankfurt.de

Publikation: Stefer, S. et al. (2011): Structural basis for tail-anchored membrane protein biogenesis by the Get3-receptor complex, Science, in press.

Media Contact

Dr. Anne Hardy idw

Weitere Informationen:

http://www.uni-frankfurt.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer