Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Anstandsdamen für den Klimaschutz

14.01.2010
Das Protein Rubisco hilft dabei, Kohlendioxid zu binden. Biochemiker konnten es erstmals im Reagenzglas nachbauen.

Steigende Temperaturen, schmelzende Gletscher und extreme Niederschläge: Der Klimawandel heizt uns ein. Wissenschaftlern des Max-Planck-Instituts für Biochemie in Martinsried und des Genzentrums der Ludwig-Maximilians-Universität München ist es nun gelungen, ein Schlüsselprotein der Photosynthese (Rubisco) im Reagenzglas nachzubauen. Es bindet Kohlendioxid. "Aber dies leider ineffektiv", sagt Manajit Hayer-Hartl, Gruppenleiterin am MPI für Biochemie. Die Forscherin will das künstlich hergestellte Protein nun so verändern, dass es effektiver Kohlendioxis umsetzt als das Original aus der Natur. (Nature, 14. Januar 2010)


Rubisco bindet Kohlendioxid und leitet die Umwandlung in Zucker und Sauerstoff ein. Bild: Max-Planck-Institut für Biochemie / Andreas Bracher

Die Photosynthese ist einer der wichtigsten biologischen Prozesse. Pflanzen wandeln Kohlenstoffdioxid (CO2) und Wasser in Sauerstoff und Zucker um. Ohne diesen Prozess wäre das heutige Leben undenkbar. Somit ist das Schlüsselprotein der Photosynthese, das Forscher kurz Rubisco nennen, eines der wichtigsten Proteine überhaupt. Es bindet CO2 und leitet die Umwandlung in Zucker und Sauerstoff ein. "Doch das Protein reagiert nicht nur mit CO2, sondern auch häufig mit Sauerstoff", erklärt Manajit Hayer-Hartl. Als es vor rund drei Milliarden Jahren entstand, war dies noch kein Problem. Es gab noch keinen Sauerstoff in der Atmosphäre. Als sich dieser jedoch mehr und mehr anreicherte, konnte sich Rubisco dieser Veränderung nicht anpassen.

Rubisco besteht aus insgesamt 16 Untereinheiten. Aufgrund seiner komplexen Struktur gelang es Forschern bislang nicht, es künstlich im Reagenzglas herzustellen. Um diese Hürde zu überwinden, nutzten die Max-Planck-Wissenschaftler der Forschungsabteilung Zelluläre Biochemie, die von F.-Ulrich Hartl geleitet wird, die Hilfe von Chaperonen. Der Begriff Chaperon kommt aus dem Französischen und bedeutet Anstandsdame. Sie begleitet eine jüngere Dame zu einem Rendezvous und passt auf, dass der Verehrer ihrem Schützling nicht zu nahe kommt.

Ähnlich arbeiten auch die molekularen Chaperone in der Zelle: Sie machen es möglich, dass nur die richtigen Teile eines frisch produzierten Proteins zueinander finden und damit die korrekte dreidimensionale Struktur erhalten. "Bei den 16 Untereinheiten von Rubisco ist die Gefahr groß, dass sich falsche Teile des Proteins zusammenlagern und verklumpen", erklärt die Biochemikerin. Nur mit der richtigen Struktur kann Rubisco seine Aufgabe in der Pflanze erfüllen.

Die MPI-Forscher konnten jetzt zeigen, dass zwei verschiedene Chaperone, die in der Fachsprache GroEL und GroES genannt werden, und ein weiteres Helferprotein (RbcX) nötig sind, um einen funktionierenden Rubisco-Komplex nachzubauen. Nun wollen die Forscher das Rubisco-Protein gentechnisch so verändern, dass es häufiger CO2 fixiert und seltener Sauerstoff umsetzt. "Da das veränderte Rubisco das Treibhausgas CO2 besser aus der Atmosphäre binden wird", so Manajit Hayer-Hartl, "könnte dies auch von Interesse für den Klimaschutz sein."

Originalveröffentlichung:

C. Liu, A. L. Young, A. Starling-Windhof, A. Bracher, S. Saschenbrecker, B. Vasudeva Rao, K. Vasudeva Rao, O. Berninghausen, T. Mielke, F. U. Hartl, R. Beckmann and M. Hayer-Hartl
Coupled chaperone action in folding and assembly of hexadecameric Rubisco
Nature, 14. Januar 2010
Weitere Informationen erhalten Sie von:
Dr. Manajit Hayer-Hartl, Chaperonin-assisted Protein Folding
Max-Planck-Institut für Biochemie, Martinsried
E-Mail: mhartl@biochem.mpg.de
Anja Konschak, Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie, Martinsried
Tel.: +49/89-8578-2824
E-Mail: konschak@biochem.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht UVB-Strahlung beeinflusst Verhalten von Stichlingen
13.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften