Um funktionstüchtig zu sein, müssen Proteine, welche aus Aminosäureketten bestehen, in eine bestimmte Struktur gefaltet werden.
Bei diesem Prozess helfen Chaperone, die kurzzeitig an Proteine binden, und so eine falsche dreidimensionale Form verhindern. Spezielle Enzyme (Isomerasen), wirken darüber hinaus lokal auf die Struktur der Aminosäureketten. Das Zusammenspiel dieser Funktionen haben Wissenschaftler der Universität Bayreuth und Max-Planck-Wissenschaftler in Halle aufgeklärt.
Die Chaperon-Untereinheit der untersuchten Faltungshelfer ist notwendig, um die sehr spezifische Isomeraseaktivität auf verschiedenartige Proteine anzuwenden. Die Kombination beider Funktionen in einem Enzym führt zu hocheffizienten Faltungshelfern. (PNAS, Early Edition, 17. November 2009)
Proteine gehören zu den wichtigsten Bausteinen des Lebens. Die Aminosäuresequenz für jedes Protein ist im Erbgut der Zelle festgeschrieben. Diese Sequenz von perlschnurartig aneinandergereihten Bestandteilen muss, um ihre biologische Funktion erfüllen zu können, zunächst in eine definierte dreidimensionale Struktur gebracht werden. Diese Faltungsprozesse sind komplex und bis heute nicht im Detail verstanden. Wird ein Protein nicht korrekt gefaltet, kann dies zu zahlreichen Krankheiten führen, wie zum Beispiel der Alzheimer-Krankheit.
Die Bindung zwischen zwei Aminosäuren kann in zwei verschiedenen Zuständen vorliegen, als trans- beziehungsweise cis-Form. Während die trans-Form eine eher gestreckte Fortführung der Peptidkette erlaubt, führt die cis-Form einen Knick in die Peptidkette ein. Das Drehen an dieser Bindung ist abhängig von speziellen Enzymen, den Isomerasen. Der Vorgang ist besonders wichtig bei der Aminosäure Prolin, da diese in entfalteten Eiweißen überwiegend in der trans-Form vorliegt, im gefalteten Zustand jedoch oft in der cis-Form. Bei der Faltung muss somit in vielen Fällen eine Umwandlung zwischen beiden Formen stattfinden. Dieser Prozess ist, wenn die nötigen Enzyme fehlen, sehr langsam. Statt im Bruchteil einer Sekunde, nehmen die Proteine ihre funktionelle dreidimensionale Struktur erst in Minuten bis Stunden ein.
Eine weitere Klasse von Faltungshelfern, die Chaperone, verhindern, dass die Proteine falsch gefaltet werden. Ein falsch gefaltetes Protein geht dem Organismus als funktionelle Einheit verloren, da es seine biologische Funktion nicht ausüben kann und somit eine sinnlose Investition darstellt. Chaperone eskortieren die Proteine - als Anstandsdamen in der Zelle - förmlich zum korrekt gefalteten Zustand.
Einige Faltungshelfer vereinigen nun die Eigenschaften von Prolylisomerasen und Chaperonen. Diese Enzyme sind modular aus verschiedenen Untereinheiten aufgebaut. Unklar war bisher der Grund für das häufige gemeinsame Auftreten dieser beiden Funktionen. Schon lange hingegen war bekannt, dass die Effizienz der Beschleunigung des cis/trans-Übergangs durch einen häufig vorkommenden Typ der Prolylisomerasen (FKBPs) stark von der chemischen Struktur der Aminosäure abhängt, welche in der Peptidkette dem Prolin unmittelbar vorangeht. Insbesondere wird die cis/trans-Umwandlung an Aminosäuren, die sich bevorzugt auf der Proteinoberfläche befinden, sehr schlecht katalysiert. Dies sollte für eine effiziente Funktion in der Proteinfaltung kontraproduktiv sein.
Faltungshelfer im Duett
Die neuen Untersuchungen zeigen nun, dass Faltungshelfer Proteinketten mit unterschiedlichsten Aminosäuren vor dem Prolin praktisch gleich gut umsetzen, wenn neben einer Prolylisomerase eine zusätzliche Chaperon-Untereinheit vorliegt. "Einigen Enzymen muss ihr Substrat anscheinend mundgerecht gereicht werden", erklärt Tobias Aumüller von der Max-Planck-Forschungsstelle für Enzymologie der Proteinfaltung dieses Ergebnis. Die Wissenschaftler beschreiben einen Mechanismus, wie diese Enzyme ihre beiden Untereinheiten einsetzen, um optimal als Faltungsenzyme arbeiten zu können. Zunächst fängt die Chaperon-Untereinheit die ungefalteten Ketten ein und gibt diese an die Prolylisomerase-Untereinheit weiter. Diese Weitergabe erleichtert der Prolylisomerase-Untereinheit ihre Arbeit. Der Schritt, der nun bestimmt, wie schnell das Enzym arbeitet, ist vermutlich der Transfer zwischen beiden Funktionszentren, der aber zügig vonstatten geht.
Zu ihrem Ergebnis kamen die Wissenschaftler, indem sie verschiedene Enzyme verglichen: Solche, die nur die Prolylisomerase-Untereinheiten besitzen, und solche, bei denen sie an die katalytische Untereinheit eine Chaperon-Untereinheit gesetzt hatten. Um die Vorliebe der beiden Enzymvarianten für unterschiedliche Substrate zu beschreiben, bildeten sie Ketten von Aminosäuren, die jeweils vor dem Prolin eine der anderen 20 Aminosäuren aufweisen. In Halle wurde eine solche Bibliothek aus Peptiden, also kurzen Sequenzen, erstellt, in Bayreuth eine aus Modellproteinen. Aus der Verbindung der Ergebnisse konnten sie dann ihre Erkenntnisse ziehen.
In Abwesenheit einer Chaperon-Untereinheit war die Isomeraseaktivität sowohl gegenüber kurzen Peptiden als auch gegenüber faltenden Proteinketten sehr stark von der Sequenzumgebung des Prolins abhängig. In ihrer Gegenwart war die Aktivität in der Proteinfaltung enorm erhöht und praktisch unabhängig von der chemischen Natur der Aminosäure vor dem Prolin. Die gute Bindung ungefalteter Proteinketten an die Chaperondomäne sorgt also dafür, dass ihre Faltung gut und sequenzunabhängig durch Faltungsenzyme bescheunigt wird.
Originalveröffentlichung:
Roman P. Jakob, Gabriel Zoldak, Tobias Aumüller, and Franz X. SchmidWeitere Informationen erhalten Sie von:
Dr. Tobias Aumüller
Barbara Abrell | idw
Weitere Informationen:
http://www.mpg.de
Weitere Berichte zu: > Aminosäure > Aminosäureketten > Anstandsdame > Chaperon-Untereinheit > Effizienz > Enzymologie > Enzymologie der Proteinfaltung > Faltung > Faltungsenzyme > Faltungshelfer > Isomeraseaktivität > Isomerasen > Peptid > Peptidkette > Prolin > Prolylisomerase-Untereinheit > Prolylisomerasen > Protein > Proteinfaltung > Proteinketten > Sequenz > Substrat > Untereinheit > Zelle > biologische Funktion > chaperone > emotionale Bindung > enzyme
Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main
Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie
Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können
Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...
Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.
Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.
Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Anzeige
Anzeige
Internationale Konferenz zur Digitalisierung
19.04.2018 | Veranstaltungen
124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus
19.04.2018 | Veranstaltungen
DFG unterstützt Kongresse und Tagungen - Juni 2018
17.04.2018 | Veranstaltungen
Grösster Elektrolaster der Welt nimmt Arbeit auf
20.04.2018 | Interdisziplinäre Forschung
Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Physik Astronomie
Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas
20.04.2018 | Geowissenschaften