Anstandsdame vermittelt Kontakt

Um funktionstüchtig zu sein, müssen Proteine, welche aus Aminosäureketten bestehen, in eine bestimmte Struktur gefaltet werden.

Bei diesem Prozess helfen Chaperone, die kurzzeitig an Proteine binden, und so eine falsche dreidimensionale Form verhindern. Spezielle Enzyme (Isomerasen), wirken darüber hinaus lokal auf die Struktur der Aminosäureketten. Das Zusammenspiel dieser Funktionen haben Wissenschaftler der Universität Bayreuth und Max-Planck-Wissenschaftler in Halle aufgeklärt.

Die Chaperon-Untereinheit der untersuchten Faltungshelfer ist notwendig, um die sehr spezifische Isomeraseaktivität auf verschiedenartige Proteine anzuwenden. Die Kombination beider Funktionen in einem Enzym führt zu hocheffizienten Faltungshelfern. (PNAS, Early Edition, 17. November 2009)

Proteine gehören zu den wichtigsten Bausteinen des Lebens. Die Aminosäuresequenz für jedes Protein ist im Erbgut der Zelle festgeschrieben. Diese Sequenz von perlschnurartig aneinandergereihten Bestandteilen muss, um ihre biologische Funktion erfüllen zu können, zunächst in eine definierte dreidimensionale Struktur gebracht werden. Diese Faltungsprozesse sind komplex und bis heute nicht im Detail verstanden. Wird ein Protein nicht korrekt gefaltet, kann dies zu zahlreichen Krankheiten führen, wie zum Beispiel der Alzheimer-Krankheit.

Die Bindung zwischen zwei Aminosäuren kann in zwei verschiedenen Zuständen vorliegen, als trans- beziehungsweise cis-Form. Während die trans-Form eine eher gestreckte Fortführung der Peptidkette erlaubt, führt die cis-Form einen Knick in die Peptidkette ein. Das Drehen an dieser Bindung ist abhängig von speziellen Enzymen, den Isomerasen. Der Vorgang ist besonders wichtig bei der Aminosäure Prolin, da diese in entfalteten Eiweißen überwiegend in der trans-Form vorliegt, im gefalteten Zustand jedoch oft in der cis-Form. Bei der Faltung muss somit in vielen Fällen eine Umwandlung zwischen beiden Formen stattfinden. Dieser Prozess ist, wenn die nötigen Enzyme fehlen, sehr langsam. Statt im Bruchteil einer Sekunde, nehmen die Proteine ihre funktionelle dreidimensionale Struktur erst in Minuten bis Stunden ein.

Eine weitere Klasse von Faltungshelfern, die Chaperone, verhindern, dass die Proteine falsch gefaltet werden. Ein falsch gefaltetes Protein geht dem Organismus als funktionelle Einheit verloren, da es seine biologische Funktion nicht ausüben kann und somit eine sinnlose Investition darstellt. Chaperone eskortieren die Proteine – als Anstandsdamen in der Zelle – förmlich zum korrekt gefalteten Zustand.

Einige Faltungshelfer vereinigen nun die Eigenschaften von Prolylisomerasen und Chaperonen. Diese Enzyme sind modular aus verschiedenen Untereinheiten aufgebaut. Unklar war bisher der Grund für das häufige gemeinsame Auftreten dieser beiden Funktionen. Schon lange hingegen war bekannt, dass die Effizienz der Beschleunigung des cis/trans-Übergangs durch einen häufig vorkommenden Typ der Prolylisomerasen (FKBPs) stark von der chemischen Struktur der Aminosäure abhängt, welche in der Peptidkette dem Prolin unmittelbar vorangeht. Insbesondere wird die cis/trans-Umwandlung an Aminosäuren, die sich bevorzugt auf der Proteinoberfläche befinden, sehr schlecht katalysiert. Dies sollte für eine effiziente Funktion in der Proteinfaltung kontraproduktiv sein.

Faltungshelfer im Duett

Die neuen Untersuchungen zeigen nun, dass Faltungshelfer Proteinketten mit unterschiedlichsten Aminosäuren vor dem Prolin praktisch gleich gut umsetzen, wenn neben einer Prolylisomerase eine zusätzliche Chaperon-Untereinheit vorliegt. „Einigen Enzymen muss ihr Substrat anscheinend mundgerecht gereicht werden“, erklärt Tobias Aumüller von der Max-Planck-Forschungsstelle für Enzymologie der Proteinfaltung dieses Ergebnis. Die Wissenschaftler beschreiben einen Mechanismus, wie diese Enzyme ihre beiden Untereinheiten einsetzen, um optimal als Faltungsenzyme arbeiten zu können. Zunächst fängt die Chaperon-Untereinheit die ungefalteten Ketten ein und gibt diese an die Prolylisomerase-Untereinheit weiter. Diese Weitergabe erleichtert der Prolylisomerase-Untereinheit ihre Arbeit. Der Schritt, der nun bestimmt, wie schnell das Enzym arbeitet, ist vermutlich der Transfer zwischen beiden Funktionszentren, der aber zügig vonstatten geht.

Zu ihrem Ergebnis kamen die Wissenschaftler, indem sie verschiedene Enzyme verglichen: Solche, die nur die Prolylisomerase-Untereinheiten besitzen, und solche, bei denen sie an die katalytische Untereinheit eine Chaperon-Untereinheit gesetzt hatten. Um die Vorliebe der beiden Enzymvarianten für unterschiedliche Substrate zu beschreiben, bildeten sie Ketten von Aminosäuren, die jeweils vor dem Prolin eine der anderen 20 Aminosäuren aufweisen. In Halle wurde eine solche Bibliothek aus Peptiden, also kurzen Sequenzen, erstellt, in Bayreuth eine aus Modellproteinen. Aus der Verbindung der Ergebnisse konnten sie dann ihre Erkenntnisse ziehen.

In Abwesenheit einer Chaperon-Untereinheit war die Isomeraseaktivität sowohl gegenüber kurzen Peptiden als auch gegenüber faltenden Proteinketten sehr stark von der Sequenzumgebung des Prolins abhängig. In ihrer Gegenwart war die Aktivität in der Proteinfaltung enorm erhöht und praktisch unabhängig von der chemischen Natur der Aminosäure vor dem Prolin. Die gute Bindung ungefalteter Proteinketten an die Chaperondomäne sorgt also dafür, dass ihre Faltung gut und sequenzunabhängig durch Faltungsenzyme bescheunigt wird.

Originalveröffentlichung:

Roman P. Jakob, Gabriel Zoldak, Tobias Aumüller, and Franz X. Schmid
Chaperone domains convert prolyl isomerasesinto generic catalysts of protein folding – PNAS, Early Edition, 17. November 2009

Weitere Informationen erhalten Sie von:

Dr. Tobias Aumüller
Max-Planck-Forschungsstelle für Enzymologie der Proteinfaltung, Halle/Saale
Tel.: +49 345 5522-823
E-Mail: aumueller@enzyme-halle.mpg.de

Media Contact

Barbara Abrell idw

Weitere Informationen:

http://www.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer