Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Amöben mit Rhythmus

04.03.2013
Bereits kleinste Veränderungen in der Umgebung können das Zellskelett des Einzellers Dictyostelium discoideum in Schwingung versetzen.

Die Amöbe Dictyostelium discoideum gilt als „Lieblingstier“ vieler Biologen und mancher Physiker: Der normalerweise in der Erde lebende Einzeller ist ein Modellorganismus für unterschiedlichste Zellen, die ihre Form verändern oder sich fortbewegen können, sobald sie chemische Konzentrationsänderungen in ihrer Umgebung erfahren.


Durch äußere chemische Reize gerät das Zytoskelett der Amöbe Dictyostelium discoideum in Bewegung: Im 20-Sekunden-Takt wird das Strukturprotein Aktin im Innern ab- und an der Innenseite der Zellmembran aufgebaut. Im linken Bild befindet sich noch recht viel Aktin (grüne Färbung) im Innern der Zelle. Einige Sekunden später (rechtes Bild) hat sich die Aktinstruktur zum Rand hin verlagert.

Fotos: MPIDS


Ein genauer Blick mit dem Fluoreszenz-Mikroskop auf die Amöbe Dictyostelium discoideum zeigt das Zytoskelett: Ein Geflecht aus Fasern und Röhren durchzieht die Zelle.

Foto: MPIDS

Beispiele sind etwa Krebszellen, embryonale Zellen in einem sehr frühen Entwicklungsstadium oder Zellen in der Wundheilung. Nun verblüfft die Amöbe durch eine faszinierende Eigenschaft: eine innere Schwingung im 20-Sekunden-Takt. Mit dieser Periode kann sich das Zytoskelett, das der Zelle ihre innere Stabilität verleiht, umorganisieren. Physiker vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS) in Göttingen haben im Rahmen des Sonderforschungsbereichs „Kollektives Verhalten weicher und biologischer Materie“ nachgewiesen, dass die Amöbe dadurch auf minimale Reize aus ihrer Umgebung reagiert. Welchen Nutzen die rhythmischen, inneren Umbauarbeiten den Einzellern bieten, ist noch unklar. Vermutlich helfen sie den Zellen sich fortzubewegen.

Die Amöbe Dictyostelium discoideum – oft verkürzend „Dicty“ genannt – ist eine feinfühlige Kreatur: Bereits kleinste Schwankungen in der chemischen Zusammensetzung seiner Umgebung kann der Einzeller wahrnehmen. Besonders in Notlagen zahlt sich diese Fähigkeit aus. Sobald die Amöbe nicht mehr ausreichend mit Nährstoffen versorgt wird, sendet sie chemische Hilferufe an ihre Nachbarn aus: eine kleine Menge des Signalstoffs Cyclisches Adenosinmonophosphat (cAMP). Die Artgenossen registrieren das Signal und leiten es ihrerseits weiter. Dadurch entstehen wie von selbst kreisförmige Spiralwellen von Hilferufen. Diesen Hilferufen folgen die Zellen, kriechen zum Wellenzentrum und ballen sich dort zusammen. Dann bilden die Zellen im Verbund einen Fruchtkörper mit Sporen aus, die so lange erhalten bleiben, bis die Umweltsituation wieder Nahrung bietet. In ihren neuen Experimenten und Rechnungen haben die Göttinger Forscher nun untersucht, was genau im Innern der einzelnen Zelle geschieht, wenn sie den Hilferuf empfängt und ihren inneren „Motor“ anschaltet.

„Dicty ist nicht die einzige Zelle, die auf einen äußeren, chemischen Stimulus reagiert“, erklärt Prof. Dr. Eberhard Bodenschatz, Direktor am MPIDS, die Motivation für die neue Studie. Die Zellen von Embryonen in einem sehr frühen Entwicklungsstadium etwa sind zunächst alle gleich. Ein Mensch oder Tier könnte so daraus nicht entstehen. Erst unterschiedliche Konzentrationen bestimmter Signalstoffe bewirken, dass sich einige der Zellen etwa zu Gehirnzellen, andere zu Muskel- oder Knochenzellen entwickeln – und zwar möglichst an der richtigen Stelle. Ganz ähnlich regen bestimmte chemische Stoffe Zellen zur Wundheilung an.

Eine entscheidende Rolle spielt das Strukturprotein Aktin. Als Geflecht feiner Röhren und Fasern durchzieht es das Innere der Zellen, verstärkt ihre Membran und verleiht so der gesamten Zellstruktur Stabilität – wie eine Art Skelett. Wissenschaftler sprechen vom Zytoskelett. Durch äußere chemische Reize gerät dieses Netzwerk in Bewegung: Im Innern wird Aktin ab-, an der Innenseite der Zellmembran verstärkt aufgebaut.

„In unseren Experimenten haben wir gezielt einzelne Zellen mit einer räumlich und zeitlich scharf begrenzten Konzentrationsänderung von cAMP konfrontiert“, erklärt Christian Westendorf vom MPIDS, der die Versuche durchgeführt hat. Schlüssel zu diesem Kunststück ist der Stoff DMNB-cAMP. „Ein kurzer Laserpuls kann diese Verbindung zerstören und so den Signalstoff cAMP freisetzen“, erklärt Westendorf. Um unterm Mikroskop die anschließende Reaktion der Zelle zu verfolgen, wurde ihr Aktin mit einem Fluoreszenz-Marker versehen.

Erstaunlicherweise zeigten die Aufnahmen, dass nicht alle Amöben gleich reagieren. Während sich das Zytoskelett bei einigen nur einmal nach außen verlagerte und dann wieder den Ausgangszustand annahm, kam es bei anderen zu mehreren Schwingungen. „In einem kleinen Prozentsatz der Zellen schwingt die Aktinstruktur sogar völlig ohne äußeren Reiz“, so Westendorf.

Um diesen Schwingungen nachzugehen, setzten die Forscher die Zellen in einem zweiten Schritt periodischen Stimulationen aus. Dabei zeigte sich bei einer Periode von etwa 20 Sekunden die stärkste Reaktion. „Dies beweist, dass der 20-Sekunden-Rhythmus eine intrinsische Eigenschaft jeder Dicty-Zelle ist“, so Prof. Dr. Carsten Beta, der am MPIDS und an der Universität Potsdam forscht und lehrt. Die Situation ist vergleichbar mit der eines Pendels, das mit einer ihm eigenen Frequenz schwingt. Stößt man das Pendel mit einer ähnlichen Frequenz an, ist der Ausschlag am stärksten.

Doch die Ergebnisse zeigen noch mehr: „Die Amöben leben offenbar am Rande einer Instabilität“, erklärt Bodenschatz. Bereits kleinste, kaum messbare Veränderungen der äußeren Bedingungen können das Zytoskelett in Schwingung versetzen – oder auch nicht. Ein theoretisches Modell, mit dem die Forscher den Auf- und Abbau des Zytoskeletts beschreiben, kommt zu demselben Ergebnis. Ein ähnliches Verhalten ist etwa von den Haarzellen im Innenohr bekannt. „Jede der Zellen ist somit eine Art Verstärker für äußere Reize: Winzige Unterschiede in den äußeren Bedingungen führen zu gravierenden Änderungen im Verhalten“, so Bodenschatz. Die Zellen können dadurch besonders sensibel auf solche Unterschiede reagieren.

Warum der innere Takt der Amöben in etwa 20 Sekunden folgt, ist allerdings noch unklar.

In ihrer natürlichen Umgebung sind die Einzeller solch vergleichsweise schnellen Signalen nicht ausgesetzt. Die Hilferufe ihrer Artgenossen erfolgen in der Regel im Abstand einiger Minuten. „Allerdings bilden die Zellen bei der Fortbewegung im Abstand von zehn bis 20 Sekunden Ausstülpungen der Zellmembrane aus“, so Bodenschatz. „Möglicherweise braucht die Zelle diese innere Uhr um sich fortzubewegen.“

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://youtu.be/RzdP4iAAEhk

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte