Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ammoniaksynthese unter milden Bedingungen

21.06.2011
Chemiker überwinden wichtige Hürde

Pflanzen benötigen Stickstoff für ihr Wachstum, sind allerdings nicht in der Lage, das in der Atmosphäre nahezu unbegrenzt verfügbare N2-Gas zu verwerten. Hierzu sind sie vielmehr auf symbiotisch lebende Mikroorganismen angewiesen, die Luftstickstoff mit Hilfe des Enzyms Nitrogenase in Ammoniak (NH3) umwandeln („Stickstofffixierung“) und den Boden mit pflanzlich nutzbaren Ammoniumverbindungen anreichern.

Die Leistungsanforderungen der modernen Agrarwirtschaft lassen sich jedoch nur durch zusätzliche Versorgung des Bodens mit erheblichen Mengen stickstoffhaltiger Düngemittel erreichen. 90 Prozent der weltweit eingesetzten Düngemittel werden aus Ammoniak hergestellt, dessen industrielle Produktion nach dem Haber-Bosch-Verfahren mehr als ein Prozent des Weltenergieverbrauchs verschlingt. Auf dem Weg zur Entwicklung leistungsfähiger Katalysatoren zur energieeffizienteren industriellen Stickstofffixierung hat ein Team von Chemikern der Goethe-Universität und der Universität Erlangen nun eine wichtige Hürde genommen.

„Wegen der ausgeprägten Reaktionsträgheit von Luftstickstoff gelingt die Reaktion mit Wasserstoff in der industriellen Ammoniaksynthese derzeit nur unter drastischen Bedingungen – aktuelle Prozesse benötigen Temperaturen von 450 °C und Drücke von 300 bar“, erklärt Prof. Max Holthausen vom Institut für Anorganische und Analytische Chemie der Goethe-Universität. „Angesichts der milden Bedingungen, unter denen Bodenbakterien diesen Prozess durchführen, stellt die Entwicklung eines chemisch-technischen Analogons seit langer Zeit ein wichtiges Forschungsgebiet für die metallorganische Chemie dar.“

Für die synthetische Herstellung von Ammoniak sind zwei gewaltige Hürden zu überwinden: Zunächst muss das N2-Gas aus der Luft durch Spaltung der äußerst starken Dreifachbindung in N2 an einem Metallzentrum chemisch aktiviert werden. Im Anschluss müssen so gebildete, metallgebundene N-Atome („Nitride“) mit Wasserstoff zur Reaktion gebracht werden („Hydrogenolyse“), so dass NH3 gebildet wird. „Dabei tritt ein grundsätzliches Dilemma auf“, so Prof. Sven Schneider vom Lehrstuhl für Anorganische und Allgemeine Chemie der Universität Erlangen-Nürnberg: „Gelingt die N2-Spaltung im ersten Schritt, so ist das gebildete Nitrid in der Regel derart stabil, dass es gar nicht erst weiterreagiert.“ Während der erste Schritt in der Vergangenheit unter milden Bedingungen realisiert werden konnte, waren für den zweiten Reaktionsschritt bislang keine Beispiele bekannt.

In einer kombinierten experimentellen und theoretischen Studie berichtet das Forscherteam nun erstmalig über die Reaktion eines Metallnitrids mit Wasserstoff zu Ammoniak unter sehr milden Reaktionsbedingungen (50 °C, 1 bar H2-Druck). Der Schlüssel zum Erfolg liegt in der Verwendung eines Metallkatalysators mit „kooperativem Pinzettenliganden“. Die quantenchemische Analyse des Reaktionsgeschehens zeigt, dass die Spaltung der H-H Bindung nicht allein am Metallzentrum des Katalysators erfolgt, sondern dass das Zusammenwirken mehrerer Bausteine des Katalysators die Reaktion drastisch beschleunigt. Die gegenwärtig verwendeten Katalysatoren erlauben noch nicht die Verwendung von N2-Gas als Stickstoffquelle, sondern verwenden hierzu Azide (s. Abbildung). Aus Sicht der Grundlagenforschung stellt diese Arbeit allerdings einen Meilenstein zur Realisierung einer chemisch-technischen Variante der Stickstofffixierung dar und weist neue Wege zur Entwicklung von Katalysatoren für die Herstellung von Ammoniak aus N2 und H2 unter milden Reaktionsbedingungen.

Publikation
Björn Askevold et al: Ammonia Formation by metal-ligand cooperative hydrogenolysis of a nitrido ligand, Nature Chemistry 22th May 2011 advanced online publication doi:10.1038/NCHEM.1051

Informationen: Prof. Max Holthausen, Institut für Anorganische und Analytische Chemie, Campus Riedberg, Tel: (069)798-29412 (-29430 Sekretariat), Max.Holthausen@chemie.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation
Telefon (069) 798 – 2 92 28, Telefax (069) 798 - 2 85 30,
E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzen können drei Eltern haben
18.10.2017 | Universität Bremen

nachricht Forscher lösen Bremse des Immunsystems
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik

IVAM-Produktmarkt „High-tech for Medical Devices“ auf der COMPAMED 2017

18.10.2017 | Messenachrichten