Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Alzheimer: Molekulare Signale versetzen Hirnzellen in Hektik

19.11.2014

Alzheimer schädigt das Nervensystem auf vielfältige Weise. Denn die Krankheit erfasst neben den Neuronen auch andere Zellen des Gehirns. Betroffen sind beispielsweise die Astrozyten.

Diese unterstützen die Funktion der Neuronen und sind unter anderem auch an der Regelung der Hirndurchblutung beteiligt. Jetzt haben Wissenschaftler des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) an den Standorten Bonn und Berlin durch Laboruntersuchungen neue Erkenntnisse darüber gewonnen, wie Alzheimer in den Stoffwechsel der Astrozyten eingreift.


Das Gehirn enthält neben Neuronen noch andere Zellen mit ganz speziellen Aufgaben. Diese Aufnahme (Gewebeprobe einer Maus mit Merkmalen der Alzheimer-Erkrankung) zeigt einige davon: Die Ausläufer sogenannter Astrozyten erscheinen weiß. Astrozyten unterstützen die Funktion von Neuronen und sind unter anderem an der Regelung der Hirndurchblutung beteiligt. Bei Alzheimer verändern diese Zellen ihre Gestalt und Aktivität. Ebenfalls im Bild: die Zellkerne (blau) von Astrozyten, Neuronen und anderen Zellen. Die grünen Farbtupfer stammen von einem Protein, das mit der Alzheimer-Erkrankung in Verbindung steht. Quelle: DZNE / A. Delekate, T. Schumacher, G. Petzold

Dabei stellten sie fest, dass sich die krankhaften Veränderungen der Astrozyten mit chemischen Wirkstoffen eindämmen lassen. Auslöser der Störungen sind Energieträger der Zelle wie das Molekül ATP: Sie können die Astrozyten in einen hyperaktiven Zustand versetzen, der durch plötzliche Schwankungen in der Konzentration von Kalzium gekennzeichnet ist. Wie die Forscher im Fachjournal „Nature Communications“ beschreiben, deuten ihre Studienergebnisse möglicherweise auf einen neuartigen Ansatzpunkt zur Behandlung von Alzheimer hin.

In gewisser Weise ähnelt das Gehirn einem großen Symphonie-Orchester, in dem diverse Instrumente zusammenspielen und doch jedes einen speziellen Part übernimmt. So enthält das Gehirn einerseits Nervenzellen. Diese werden auch „Neurone“ genannt und sind zu einem Geflecht verwoben, über das sie immer wieder Signale austauschen. Nicht weniger wichtig für die Funktion des Gehirns sind anderseits die sogenannten Gliazellen. Diese galten einst als bloßes Bindegewebe des Gehirns. Doch inzwischen hat sich herausgestellt, dass sie noch weitaus komplexere Aufgaben übernehmen und eine sehr vielseitige Familie an Zellen umfassen. Dazu zählen beispielsweise die Astrozyten.

„Astrozyten haben im Gehirn verschiedene Funktionen. Dazu gehört, dass sie die Neuronen mit Nährstoffen beliefern. Sie entsorgen aber auch Nebenprodukte des Stoffwechsels“, erläutert Professor Gabor Petzold, Gruppenleiter am Bonner Standort des DZNE und Leiter des Schwerpunkts Vaskuläre Neurologie an der Neurologischen Klinik des Universitätsklinikums Bonn. „Außerdem wirken sie auf die Kommunikation der Neuronen untereinander und sind an der Steuerung der Hirndurchblutung beteiligt.“

Alzheimer verändert die Astrozyten

Schon länger ist bekannt, dass Astrozyten infolge von Alzheimer ihre Gestalt wechseln: Zellen, die sich in der Nähe der für diese Erkrankung typischen Proteinablagerungen – den „Plaques“ – aufhalten, werden größer und bilden zusätzliche Ausläufer. Allerdings war bislang weitgehend unklar, wie sich die Funktion der Astrozyten dadurch verändert.

Petzold und seine Kollegen untersuchten daher Mäuse, deren Gehirne die für Alzheimer typischen Proteinablagerungen aufwiesen. Dabei fanden sie heraus, dass der Kalzium-Stoffwechsel von Astrozyten in der Umgebung der Plaques gestört war. Die Kalziumkonzentration spielt für den zellulären Stoffwechsel eine wichtige Rolle, weil sie den Ablauf biochemischer Reaktionen beeinflusst. „Die Astroyzten waren hyperaktiv. Das heißt, dass der Kalziumspiegel in den Zellen plötzlich ansteigen konnte. Auch haben wir festgestellt, dass dieser Effekt häufig auf benachbarte Astrozyten übergriff. Dabei entstanden sogenannte Kalzium-Wellen. Das ist so, als würde man einen Stein ins Wasser werfen“, beschreibt Petzold die Situation. „Normale Astrozyten hingegen zeigen nur vergleichsweise selten Veränderungen der Kalziumkonzentration.“

Energieträger mit Signalwirkung

Ausgelöst wurden diese Schwankungen durch Energieträger der Zelle, darunter ein Molekül mit dem Namen ATP. Als die Forscher dessen Freisetzung durch chemische Wirkstoffe blockierten, normalisierte sich die Aktivität der Astrozyten. Der gleiche Effekt stellte sich ein, als die Wissenschaftler einen bestimmten Rezeptor außer Funktion setzten, über den die molekularen Energiespeicher an die Astrozyten andocken. Wie das Team um Petzold erkannte, war dieser Rezeptor ungewöhnlich häufig vertreten auf der Oberfläche von Astrozyten in der Nachbarschaft der Plaques. Dieser Umstand machte die Zellen besonders empfänglich.

„ATP und ähnliche Moleküle versorgen die Zellen mit Kraftstoff. Es ist aber schon länger bekannt, dass sie auch als Botenstoffe agieren können. Dann wirken sie wie ein Signal, das bestimmte Vorgänge auslöst“, erklärt Petzold. „Diese Moleküle sind im Zellgewebe weit verbreitet. Man vermutet allerdings, dass sie in der Umgebung der Plaques vermehrt freigesetzt werden. Zwar gibt es dafür keine definitiven Beweise. Dafür konnten wir jedoch eindeutig zeigen, dass sie die Astrozyten in einen hyperaktiven Zustand versetzen. Die Signalkette wird über einen speziellen Rezeptor auf der Zelloberfläche vermittelt.“

Einfluss auf den Blutfluss

Noch ist ungewiss, ob der hyperaktive Zustand der Astrozyten eine positive Abwehrreaktion darstellt oder negative Folgen damit verbunden sind. Allerdings zeigen die aktuellen Untersuchungen, dass die Kalzium-Wellen mit lokalen Veränderungen der Hirndurchblutung einhergehen können. „Das ist interessant, weil es seit langem Hinweise dafür gibt, dass Alzheimer eine vaskuläre Komponente hat. Störungen der Gefäße und des Blutflusses scheinen eine wichtige Rolle zu spielen“, sagt Petzold.

Nach Einschätzung des Bonner Wissenschaftlers könnten sich aus aktuellen Studienergebnissen neue Wege für die Therapie ergeben: „Unsere Untersuchungen belegen, dass es prinzipiell möglich ist, die Hyperaktivität der Zellen einzudämmen. Dies könnte auf einen neuartigen Ansatz für die Behandlung hinweisen. Mit geeigneten Pharmaka könnte es vielleicht möglich sein, den Krankheitsverlauf zu beeinflussen.“

Bisher, schränkt der Forscher ein, habe man die Lage allerdings nur auf Ebene des zellulären Netzwerkes im Gehirn betrachtet. Deshalb wollen Petzold und seine Kollegen in weiteren Studien untersuchen, wie sich die Eindämmung der Hyperaktivität auf Krankheitssymptome auswirkt.

Originalveröffentlichung
„Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer’s disease mouse model”, Andrea Delekate, Martina Füchtemeier, Toni Schumacher, Cordula Ulbrich, Marco Foddis, and Gabor C. Petzold, Nature Communications, 2014, doi: 10.1038/ncomms6422


Weitere Informationen:

https://www.dzne.de/ueber-uns/presse/meldungen/2014/pressemitteilung-nr-16.html

Dr. Marcus Neitzert | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie