Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Alzheimer: Molekulare Signale versetzen Hirnzellen in Hektik

19.11.2014

Alzheimer schädigt das Nervensystem auf vielfältige Weise. Denn die Krankheit erfasst neben den Neuronen auch andere Zellen des Gehirns. Betroffen sind beispielsweise die Astrozyten.

Diese unterstützen die Funktion der Neuronen und sind unter anderem auch an der Regelung der Hirndurchblutung beteiligt. Jetzt haben Wissenschaftler des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) an den Standorten Bonn und Berlin durch Laboruntersuchungen neue Erkenntnisse darüber gewonnen, wie Alzheimer in den Stoffwechsel der Astrozyten eingreift.


Das Gehirn enthält neben Neuronen noch andere Zellen mit ganz speziellen Aufgaben. Diese Aufnahme (Gewebeprobe einer Maus mit Merkmalen der Alzheimer-Erkrankung) zeigt einige davon: Die Ausläufer sogenannter Astrozyten erscheinen weiß. Astrozyten unterstützen die Funktion von Neuronen und sind unter anderem an der Regelung der Hirndurchblutung beteiligt. Bei Alzheimer verändern diese Zellen ihre Gestalt und Aktivität. Ebenfalls im Bild: die Zellkerne (blau) von Astrozyten, Neuronen und anderen Zellen. Die grünen Farbtupfer stammen von einem Protein, das mit der Alzheimer-Erkrankung in Verbindung steht. Quelle: DZNE / A. Delekate, T. Schumacher, G. Petzold

Dabei stellten sie fest, dass sich die krankhaften Veränderungen der Astrozyten mit chemischen Wirkstoffen eindämmen lassen. Auslöser der Störungen sind Energieträger der Zelle wie das Molekül ATP: Sie können die Astrozyten in einen hyperaktiven Zustand versetzen, der durch plötzliche Schwankungen in der Konzentration von Kalzium gekennzeichnet ist. Wie die Forscher im Fachjournal „Nature Communications“ beschreiben, deuten ihre Studienergebnisse möglicherweise auf einen neuartigen Ansatzpunkt zur Behandlung von Alzheimer hin.

In gewisser Weise ähnelt das Gehirn einem großen Symphonie-Orchester, in dem diverse Instrumente zusammenspielen und doch jedes einen speziellen Part übernimmt. So enthält das Gehirn einerseits Nervenzellen. Diese werden auch „Neurone“ genannt und sind zu einem Geflecht verwoben, über das sie immer wieder Signale austauschen. Nicht weniger wichtig für die Funktion des Gehirns sind anderseits die sogenannten Gliazellen. Diese galten einst als bloßes Bindegewebe des Gehirns. Doch inzwischen hat sich herausgestellt, dass sie noch weitaus komplexere Aufgaben übernehmen und eine sehr vielseitige Familie an Zellen umfassen. Dazu zählen beispielsweise die Astrozyten.

„Astrozyten haben im Gehirn verschiedene Funktionen. Dazu gehört, dass sie die Neuronen mit Nährstoffen beliefern. Sie entsorgen aber auch Nebenprodukte des Stoffwechsels“, erläutert Professor Gabor Petzold, Gruppenleiter am Bonner Standort des DZNE und Leiter des Schwerpunkts Vaskuläre Neurologie an der Neurologischen Klinik des Universitätsklinikums Bonn. „Außerdem wirken sie auf die Kommunikation der Neuronen untereinander und sind an der Steuerung der Hirndurchblutung beteiligt.“

Alzheimer verändert die Astrozyten

Schon länger ist bekannt, dass Astrozyten infolge von Alzheimer ihre Gestalt wechseln: Zellen, die sich in der Nähe der für diese Erkrankung typischen Proteinablagerungen – den „Plaques“ – aufhalten, werden größer und bilden zusätzliche Ausläufer. Allerdings war bislang weitgehend unklar, wie sich die Funktion der Astrozyten dadurch verändert.

Petzold und seine Kollegen untersuchten daher Mäuse, deren Gehirne die für Alzheimer typischen Proteinablagerungen aufwiesen. Dabei fanden sie heraus, dass der Kalzium-Stoffwechsel von Astrozyten in der Umgebung der Plaques gestört war. Die Kalziumkonzentration spielt für den zellulären Stoffwechsel eine wichtige Rolle, weil sie den Ablauf biochemischer Reaktionen beeinflusst. „Die Astroyzten waren hyperaktiv. Das heißt, dass der Kalziumspiegel in den Zellen plötzlich ansteigen konnte. Auch haben wir festgestellt, dass dieser Effekt häufig auf benachbarte Astrozyten übergriff. Dabei entstanden sogenannte Kalzium-Wellen. Das ist so, als würde man einen Stein ins Wasser werfen“, beschreibt Petzold die Situation. „Normale Astrozyten hingegen zeigen nur vergleichsweise selten Veränderungen der Kalziumkonzentration.“

Energieträger mit Signalwirkung

Ausgelöst wurden diese Schwankungen durch Energieträger der Zelle, darunter ein Molekül mit dem Namen ATP. Als die Forscher dessen Freisetzung durch chemische Wirkstoffe blockierten, normalisierte sich die Aktivität der Astrozyten. Der gleiche Effekt stellte sich ein, als die Wissenschaftler einen bestimmten Rezeptor außer Funktion setzten, über den die molekularen Energiespeicher an die Astrozyten andocken. Wie das Team um Petzold erkannte, war dieser Rezeptor ungewöhnlich häufig vertreten auf der Oberfläche von Astrozyten in der Nachbarschaft der Plaques. Dieser Umstand machte die Zellen besonders empfänglich.

„ATP und ähnliche Moleküle versorgen die Zellen mit Kraftstoff. Es ist aber schon länger bekannt, dass sie auch als Botenstoffe agieren können. Dann wirken sie wie ein Signal, das bestimmte Vorgänge auslöst“, erklärt Petzold. „Diese Moleküle sind im Zellgewebe weit verbreitet. Man vermutet allerdings, dass sie in der Umgebung der Plaques vermehrt freigesetzt werden. Zwar gibt es dafür keine definitiven Beweise. Dafür konnten wir jedoch eindeutig zeigen, dass sie die Astrozyten in einen hyperaktiven Zustand versetzen. Die Signalkette wird über einen speziellen Rezeptor auf der Zelloberfläche vermittelt.“

Einfluss auf den Blutfluss

Noch ist ungewiss, ob der hyperaktive Zustand der Astrozyten eine positive Abwehrreaktion darstellt oder negative Folgen damit verbunden sind. Allerdings zeigen die aktuellen Untersuchungen, dass die Kalzium-Wellen mit lokalen Veränderungen der Hirndurchblutung einhergehen können. „Das ist interessant, weil es seit langem Hinweise dafür gibt, dass Alzheimer eine vaskuläre Komponente hat. Störungen der Gefäße und des Blutflusses scheinen eine wichtige Rolle zu spielen“, sagt Petzold.

Nach Einschätzung des Bonner Wissenschaftlers könnten sich aus aktuellen Studienergebnissen neue Wege für die Therapie ergeben: „Unsere Untersuchungen belegen, dass es prinzipiell möglich ist, die Hyperaktivität der Zellen einzudämmen. Dies könnte auf einen neuartigen Ansatz für die Behandlung hinweisen. Mit geeigneten Pharmaka könnte es vielleicht möglich sein, den Krankheitsverlauf zu beeinflussen.“

Bisher, schränkt der Forscher ein, habe man die Lage allerdings nur auf Ebene des zellulären Netzwerkes im Gehirn betrachtet. Deshalb wollen Petzold und seine Kollegen in weiteren Studien untersuchen, wie sich die Eindämmung der Hyperaktivität auf Krankheitssymptome auswirkt.

Originalveröffentlichung
„Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer’s disease mouse model”, Andrea Delekate, Martina Füchtemeier, Toni Schumacher, Cordula Ulbrich, Marco Foddis, and Gabor C. Petzold, Nature Communications, 2014, doi: 10.1038/ncomms6422


Weitere Informationen:

https://www.dzne.de/ueber-uns/presse/meldungen/2014/pressemitteilung-nr-16.html

Dr. Marcus Neitzert | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie