Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Alzheimer: Molekulare Signale versetzen Hirnzellen in Hektik

19.11.2014

Alzheimer schädigt das Nervensystem auf vielfältige Weise. Denn die Krankheit erfasst neben den Neuronen auch andere Zellen des Gehirns. Betroffen sind beispielsweise die Astrozyten.

Diese unterstützen die Funktion der Neuronen und sind unter anderem auch an der Regelung der Hirndurchblutung beteiligt. Jetzt haben Wissenschaftler des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) an den Standorten Bonn und Berlin durch Laboruntersuchungen neue Erkenntnisse darüber gewonnen, wie Alzheimer in den Stoffwechsel der Astrozyten eingreift.


Das Gehirn enthält neben Neuronen noch andere Zellen mit ganz speziellen Aufgaben. Diese Aufnahme (Gewebeprobe einer Maus mit Merkmalen der Alzheimer-Erkrankung) zeigt einige davon: Die Ausläufer sogenannter Astrozyten erscheinen weiß. Astrozyten unterstützen die Funktion von Neuronen und sind unter anderem an der Regelung der Hirndurchblutung beteiligt. Bei Alzheimer verändern diese Zellen ihre Gestalt und Aktivität. Ebenfalls im Bild: die Zellkerne (blau) von Astrozyten, Neuronen und anderen Zellen. Die grünen Farbtupfer stammen von einem Protein, das mit der Alzheimer-Erkrankung in Verbindung steht. Quelle: DZNE / A. Delekate, T. Schumacher, G. Petzold

Dabei stellten sie fest, dass sich die krankhaften Veränderungen der Astrozyten mit chemischen Wirkstoffen eindämmen lassen. Auslöser der Störungen sind Energieträger der Zelle wie das Molekül ATP: Sie können die Astrozyten in einen hyperaktiven Zustand versetzen, der durch plötzliche Schwankungen in der Konzentration von Kalzium gekennzeichnet ist. Wie die Forscher im Fachjournal „Nature Communications“ beschreiben, deuten ihre Studienergebnisse möglicherweise auf einen neuartigen Ansatzpunkt zur Behandlung von Alzheimer hin.

In gewisser Weise ähnelt das Gehirn einem großen Symphonie-Orchester, in dem diverse Instrumente zusammenspielen und doch jedes einen speziellen Part übernimmt. So enthält das Gehirn einerseits Nervenzellen. Diese werden auch „Neurone“ genannt und sind zu einem Geflecht verwoben, über das sie immer wieder Signale austauschen. Nicht weniger wichtig für die Funktion des Gehirns sind anderseits die sogenannten Gliazellen. Diese galten einst als bloßes Bindegewebe des Gehirns. Doch inzwischen hat sich herausgestellt, dass sie noch weitaus komplexere Aufgaben übernehmen und eine sehr vielseitige Familie an Zellen umfassen. Dazu zählen beispielsweise die Astrozyten.

„Astrozyten haben im Gehirn verschiedene Funktionen. Dazu gehört, dass sie die Neuronen mit Nährstoffen beliefern. Sie entsorgen aber auch Nebenprodukte des Stoffwechsels“, erläutert Professor Gabor Petzold, Gruppenleiter am Bonner Standort des DZNE und Leiter des Schwerpunkts Vaskuläre Neurologie an der Neurologischen Klinik des Universitätsklinikums Bonn. „Außerdem wirken sie auf die Kommunikation der Neuronen untereinander und sind an der Steuerung der Hirndurchblutung beteiligt.“

Alzheimer verändert die Astrozyten

Schon länger ist bekannt, dass Astrozyten infolge von Alzheimer ihre Gestalt wechseln: Zellen, die sich in der Nähe der für diese Erkrankung typischen Proteinablagerungen – den „Plaques“ – aufhalten, werden größer und bilden zusätzliche Ausläufer. Allerdings war bislang weitgehend unklar, wie sich die Funktion der Astrozyten dadurch verändert.

Petzold und seine Kollegen untersuchten daher Mäuse, deren Gehirne die für Alzheimer typischen Proteinablagerungen aufwiesen. Dabei fanden sie heraus, dass der Kalzium-Stoffwechsel von Astrozyten in der Umgebung der Plaques gestört war. Die Kalziumkonzentration spielt für den zellulären Stoffwechsel eine wichtige Rolle, weil sie den Ablauf biochemischer Reaktionen beeinflusst. „Die Astroyzten waren hyperaktiv. Das heißt, dass der Kalziumspiegel in den Zellen plötzlich ansteigen konnte. Auch haben wir festgestellt, dass dieser Effekt häufig auf benachbarte Astrozyten übergriff. Dabei entstanden sogenannte Kalzium-Wellen. Das ist so, als würde man einen Stein ins Wasser werfen“, beschreibt Petzold die Situation. „Normale Astrozyten hingegen zeigen nur vergleichsweise selten Veränderungen der Kalziumkonzentration.“

Energieträger mit Signalwirkung

Ausgelöst wurden diese Schwankungen durch Energieträger der Zelle, darunter ein Molekül mit dem Namen ATP. Als die Forscher dessen Freisetzung durch chemische Wirkstoffe blockierten, normalisierte sich die Aktivität der Astrozyten. Der gleiche Effekt stellte sich ein, als die Wissenschaftler einen bestimmten Rezeptor außer Funktion setzten, über den die molekularen Energiespeicher an die Astrozyten andocken. Wie das Team um Petzold erkannte, war dieser Rezeptor ungewöhnlich häufig vertreten auf der Oberfläche von Astrozyten in der Nachbarschaft der Plaques. Dieser Umstand machte die Zellen besonders empfänglich.

„ATP und ähnliche Moleküle versorgen die Zellen mit Kraftstoff. Es ist aber schon länger bekannt, dass sie auch als Botenstoffe agieren können. Dann wirken sie wie ein Signal, das bestimmte Vorgänge auslöst“, erklärt Petzold. „Diese Moleküle sind im Zellgewebe weit verbreitet. Man vermutet allerdings, dass sie in der Umgebung der Plaques vermehrt freigesetzt werden. Zwar gibt es dafür keine definitiven Beweise. Dafür konnten wir jedoch eindeutig zeigen, dass sie die Astrozyten in einen hyperaktiven Zustand versetzen. Die Signalkette wird über einen speziellen Rezeptor auf der Zelloberfläche vermittelt.“

Einfluss auf den Blutfluss

Noch ist ungewiss, ob der hyperaktive Zustand der Astrozyten eine positive Abwehrreaktion darstellt oder negative Folgen damit verbunden sind. Allerdings zeigen die aktuellen Untersuchungen, dass die Kalzium-Wellen mit lokalen Veränderungen der Hirndurchblutung einhergehen können. „Das ist interessant, weil es seit langem Hinweise dafür gibt, dass Alzheimer eine vaskuläre Komponente hat. Störungen der Gefäße und des Blutflusses scheinen eine wichtige Rolle zu spielen“, sagt Petzold.

Nach Einschätzung des Bonner Wissenschaftlers könnten sich aus aktuellen Studienergebnissen neue Wege für die Therapie ergeben: „Unsere Untersuchungen belegen, dass es prinzipiell möglich ist, die Hyperaktivität der Zellen einzudämmen. Dies könnte auf einen neuartigen Ansatz für die Behandlung hinweisen. Mit geeigneten Pharmaka könnte es vielleicht möglich sein, den Krankheitsverlauf zu beeinflussen.“

Bisher, schränkt der Forscher ein, habe man die Lage allerdings nur auf Ebene des zellulären Netzwerkes im Gehirn betrachtet. Deshalb wollen Petzold und seine Kollegen in weiteren Studien untersuchen, wie sich die Eindämmung der Hyperaktivität auf Krankheitssymptome auswirkt.

Originalveröffentlichung
„Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer’s disease mouse model”, Andrea Delekate, Martina Füchtemeier, Toni Schumacher, Cordula Ulbrich, Marco Foddis, and Gabor C. Petzold, Nature Communications, 2014, doi: 10.1038/ncomms6422


Weitere Informationen:

https://www.dzne.de/ueber-uns/presse/meldungen/2014/pressemitteilung-nr-16.html

Dr. Marcus Neitzert | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise