Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Alzheimer-Mäuse: Gedächtnisverlust durch Tau-Proteine ist umkehrbar

16.02.2011
Max-Planck-Studie macht Hoffnung auf wirksame Therapien

Ablagerungen des Amyloid-beta- und des Tau-Proteins im Gehirn sind das charakteristische Merkmal von Morbus Alzheimer. Vor allem der Hippocampus ist davon betroffen, eine für Lernen und Gedächtnis zentrale Region.

Offenbar verschwindet aber die giftige Wirkung des Tau-Proteins wieder weitgehend, wenn das entsprechende Tau-Gen abgeschaltet wird. Forscher von den Max-Planck Arbeitsgruppen für Strukturelle Molekularbiologie am DESY in Hamburg konnten zeigen, dass bei vormals „dementen“ Mäusen mit einem menschlichen Tau-Gen die Lernfähigkeit und Erinnerung zurückkehrt und sich Synapsen teilweise neu bilden, sobald das Gen inaktiv ist.

Die Wissenschaftler testen nun Wirkstoffe gegen die Tau-Ablagerungen an Mäusen. Möglicherweise könnte damit der Gedächtnisverlust bei Alzheimer im frühen Stadium zumindest teilweise wieder rückgängig gemacht werden.

Während verklumptes Amyloid-beta zwischen den Nervenzellen unlösliche Knäuel bildet, verklumpt das Tau-Protein innerhalb der Neuronen. Das Protein stabilisiert röhrenförmige Proteine des Zellskeletts, die so genannten Mikrotubuli. Sie sind die "Schienen" für den Transport in Zellen. Bei Alzheimer wird Tau durch zu viele Phosphatgruppen funktionsunfähig und verklumpt. Dadurch bricht der Nährstofftransport zusammen, die Nervenzellen und ihre Synapsen sterben ab. Dies ist der Beginn des Gedächtnisverlustes.

Das Team von Eva und Eckhard Mandelkow von den Max-Planck Arbeitsgruppen für Strukturelle Molekularbiologie haben - zusammen mit Kollegen aus Leuven, Hamburg und Erlangen - Mäuse mit zwei verschiedenen menschlichen Tau-Genvarianten ausgestattet: Die eine Gruppe mit einer Form, die nicht verknäulen kann (anti-aggregant), und eine zweite mit dem Bauplan für die stark aggregierende Proteinvariante (pro-aggregant). Mäuse mit der ersten Form entwickelten keinerlei Alzheimer-Symptome. Nager mit pro-aggregant Tau wurden hingegen „dement“.

Die Wissenschaftler maßen diesen Gedächtnisverlust mit Hilfe eines Schwimmtests: Gesunde Mäuse lernen schnell in einem Wasserbassin die rettende, unter der Oberfläche liegende Plattform zu finden. Die transgenen Tiere dagegen, die ein zusätzliches Gen für die Bildung schnell aggregierenden menschlichen Tau-Proteins besitzen, paddeln dagegen ziellos durch das Bassin, ehe sie eher zufällig auf die kleine Insel treffen. Sie benötigen mehr als viermal so viel Zeit wie ihre gesunden Artgenossen. Doch schaltet man bei ihnen das mutierte toxische Gen wieder ab, schaffen sie es bereits ein paar Wochen später fast spielend, ihr Fell rasch ins Trockene zu bringen.

Überraschende Gewebsresultate
Gewebeuntersuchungen zeigten, dass bei der ersten Gruppe erwartungsgemäß keinerlei Tau-Klumpen entstanden waren. In der zweiten Gruppe – den „dementen“ Mäusen – bildeten sich hingegen Co-Aggregate aus menschlichem Tau und „Maus-Tau“. Normalerweise verklumpt das arteigene Tau-Protein von Mäusen aber gar nicht. „Noch erstaunlicher ist aber: Wochen nachdem das zusätzliche Gen abgeschaltet worden war, hatte sich das verklumpte menschliche Tau wieder aufgelöst – das „Maus-Tau“ blieb jedoch weiterhin verknäult. Trotzdem waren die Mäuse wieder fähig zu lernen und sich zu erinnern“, sagt Eckhard Mandelkow. Genauere Untersuchungen zeigten, dass sich bei ihnen sogar neue Synapsen gebildet hatten.

Die Wissenschaftler schließen daraus, dass mutiertes, also krank machendes Tau, gesundes Tau verändern kann. Offenbar wirkt es wie ein Kristallisationskeim – und das machte es so giftig für die Nervenzellen. „Die eigentliche Sensation ist jedoch, dass der Verlauf von Alzheimer umgekehrt werden kann. Zumindest in einem frühen Stadium der Erkrankung, noch bevor zu viele Neuronen zerstört sind“, sagt Eva Mandelkow, die zusammen mit ihrem Mann in diesem Jahr mit dem Potamkin-Preis 2011 für Alzheimer-Forschung der American Academy of Neurology ausgezeichnet wird.

Beim Menschen lässt sich das Verklumpen von Tau jedoch nicht einfach ausschalten wie bei den transgenen Mäusen. Aber spezielle Wirkstoffe könnten die Tau-Aggregate wieder auflösen. Die Hamburger Forscher haben bereits durch Screening von 200.000 Substanzen zwei Wirkstoffklassen gefunden, die Tau-Aggregate wieder in lösliches Tau verwandeln können. Sie werden nun im Tierversuch getestet.

Originalveröffentlichung
Astrid Sydow, Ann Van der Jeugd, Fang Zheng, Tariq Ahmed, Detlef Balschun, Olga Petrova, Dagmar Drexler, Lepu Zhou, Gabriele Rune, Eckhard Mandelkow, Rudi D'Hooge, Christian Alzheimer, Eva-Maria Mandelkow
Tau-induced Defects in Synaptic Plasticity, Learning and Memory are reversible in Transgenic Mice after Switching off the Toxic Tau Mutant

Journal of Neuroscience, 16. Februar 2011

Dr. Eva-Maria Mandelkow
Max-Planck-Arbeitsgruppen für strukturelle Molekularbiologie am DESY, Hamburg
Telefon: +49 40 8998-2810
Fax: +49 40 897168-10
E-Mail: eva.mandelkow@mpasmb.desy.de
Prof. Dr. Eckhard Mandelkow
Max-Planck-Arbeitsgruppen für strukturelle Molekularbiologie am DESY, Hamburg
Telefon: +49 40 8998-2810
Fax: +49 40 897168-10
E-Mail: eckhard.mandelkow@mpasmb.desy.de

Dr. Eva-Maria Mandelkow | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/1156818/alzheimer_gedaechtnis

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

nachricht Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?
16.01.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungsnachrichten

Wie das Wissen in der Technik entsteht

17.01.2017 | Förderungen Preise

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik