Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Alzheimer-Auslöser „reift“ vom harmlosen Eiweiß zum Nervenzellkiller

06.03.2014

Wissenschaftler der interdisziplinären „Projektgruppe Alzheimer-Forschung Ulm“ haben nachgewiesen, dass mit dem Fortschreiten der Krankheit nicht nur die Menge des abgelagerten Beta-Amyloid zunimmt, sondern dass die Eiweißaggregate einen mehrstufigen „Reifungsprozess“ durchlaufen.

Bestimmte Reifungsschritte sind dabei charakterisiert durch das Auftreten spezifischer modifizierter Amyloidpeptide, von denen bekannt ist, dass sie die Interaktionsfreudigkeit gegenüber anderen Proteinen erhöhen. Das heißt, die Substanz wird immer klebriger und neigt verstärkt zur Verklumpung, was sie noch toxischer auf die Nervenzellen im Gehirn wirken lässt.


Antikörper gegen Beta-Amyloid machen die Plaques im Gehirngewebe durch die Färbung gut sichtbar (Bild oben links), Antikörper gegen abnormales tau-Protein zeigen dagegen typische Veränderung

Abbildung: Dietmar Thal

Sie sind klebrig und verklumpen leicht. Nervenzellen im Gehirn, die damit befallen sind, geben meist irgendwann ihren Geist auf. Die Rede ist von einer ganz speziellen Eiweißverbindung, einem Peptid namens Beta-Amyloid, das an der Entstehung der Alzheimer Krankheit beteiligt ist.

Oft bleibt die Krankheit über Jahre im Verborgenen, bis sie schließlich als Demenz hervorbricht. Die Symptome: Verwirrtheit, Orientierungslosigkeit und Vergesslichkeit – bis hin zur völligen Auflösung von Gedächtnis und Persönlichkeit.

Wissenschaftler der Universität Ulm haben nun nachgewiesen, dass mit dem Fortschreiten der Krankheit nicht nur die Menge des abgelagerten Beta-Amyloid zunimmt, sondern dass die Eiweißaggregate einen mehrstufigen „Reifungsprozess“ durchlaufen.

Bestimmte Reifungsschritte sind dabei charakterisiert durch das Auftreten spezifischer modifizierter Amyloidpeptide, von denen bekannt ist, dass sie die Interaktionsfreudigkeit gegenüber anderen Proteinen erhöhen.

„Das heißt, die Substanz wird immer klebriger und neigt verstärkt zur Verklumpung, was sie noch toxischer auf die Nervenzellen im Gehirn wirken lässt“, erklärt Professor Dietmar Thal. Der Leiter der Sektion Neuropathologie der Universität Ulm ist Projektleiter der nun in „Brain“ veröffentlichten Studie über den Zusammenhang zwischen biochemischen und klinischen Stadien bei Alzheimer. 

Zwar geht man mittlerweile davon aus, dass sich bereits weniger stark aggregierte Formen dieses Peptids (Beta-Amyloid-Oligomere) toxisch auf empfindliche Hirnstrukturen wie Synapsen auswirken. „Die klinischen Symptome der Alzheimer-Demenz treten allerdings meist erst dann auf, wenn sich im Gehirn bereits pathologische Veränderungen durch abgelagerte Fibrillen und Plaques zeigen“, so Professorin Christine von Arnim. Die Oberärztin in der Klinik für Neurologie am Universitätsklinikum Ulm gehört neben dem Neuropathologen Dietmar Thal und dem Biochemiker Professor Marcus Fändrich zu den Gründern der Ende letzten Jahres ins Leben gerufenen „Projektgruppe Alzheimer-Forschung Ulm“.

Das interdisziplinäre Team aus Wissenschaftlern der Ulmer Universität und des Universitätsklinikums Ulm konnte nun anhand zahlreicher Gewebeproben zeigen, dass sich im Gehirn von verstorbenen Alzheimer-Kranken mit Demenzsymptomen eine spezielle phosphorylierte Form des Peptids nachweisen lässt, die die Bildung von Beta-Amyloid-Oligomeren fördert. Diese Makromoleküle begünstigen die Fibrillenbildung, indem sie als „Keime“ die Zusammenlagerung der Proteine zu faserartigen Molekülkomplexen befördern, wie die Kooperationspartner von der Universität Bonn bereits früher zeigen konnten.

Hirngewebe von Alzheimer-Kranken im vorklinischen – also symptomfreien – Stadium wies kein phosphoryliertes Amyloid aber in vielen Fällen eine andere verkürzte, so genannte Pyroglutamat-modifizierte Amyloidvariante auf. Von dieser Variante ist bekannt, dass auch sie die Aggregationsneigung der Fibrillen erhöht. „Man kann sich das als eine Art Reifungsprozess vorstellen, über den das Beta-Amyloid immer komplexere Strukturen annimmt, die den Neuronen immer stärker zusetzen“, veranschaulicht der Amyloid-Experte Fändrich. 

Die Alzheimer-Forscher haben ihre Studienergebnisse schließlich in ein hierarchisches Krankheitsmodell mit drei biochemischen Stadien überführt: im ersten biochemischen Stadium lassen sich ausschließlich Beta-Amyloid-Ablagerungen nachweisen. In Stadium zwei dagegen findet sich zusätzlich die modifizierte Variante, die durch Verkürzungen gekennzeichnet ist und im dritten Stadium tritt darüber hinaus die phosphorylierte Variante des Beta-Amyloids hinzu.

„Alle klinischen Alzheimer-Fälle mit erkennbaren Symptomen waren biochemisch dem Stadium 3 zuzurechnen, die durch das Auftreten von phosphoriliertem Beta-Amyloid gekennzeichnet ist“, erläutert Erstautor Dr. Ajeet Rijal Upadhaya. „Es gibt also einen deutlichen Zusammenhang zwischen der Ausprägung der klinischen Symptomatik und der durch die Peptid-Modifikationen verstärkten `Reifung´ der Beta-Amyloid-Strukturen von löslichen Peptidmolekülen und Oligomeren hin zu Fibrillen und Plaques“, so der wissenschaftlicher Mitarbeiter in der Sektion Neuropathologie. 

Die Ulmer Alzheimer-Forschungsgruppe konnte also in Zusammenarbeit mit Wissenschaftlern der Universität Bonn (Prof. Jochen Walter, Dr. Sathish Kumar) und der japanischen Gunma University School of Health Sciences in Maebashi (Prof. Haruyashu Yamaguchi) zeigen, dass durch die Einlagerung modifizierter Amyloid-Proteine die Verklumpungsneigung löslicher und unlöslicher Beta-Amyloid-Peptide verstärkt wird. Das Projekt wurde von der Alzheimer Forschung Initiative (AFI #10810) unterstützt. „Wir hoffen nun, dass sich mit unseren Befunden bessere Ansatzpunkte für neue Therapien finden lassen. Denn noch immer gibt es keine wirksamen Medikamente, mit denen sich Alzheimer wirklich heilen lässt“, so das Ulmer Forscherteam.

Zur Studie:
Untersucht wurden dafür die Gehirne von 21 Alzheimer-Patienten mit Demenzsymptomen sowie von 33 symptomfreien präklinischen Alzheimer-Fällen. Zur Kontrolle wurden die Daten verglichen mit den Ergebnissen aus einer Kontrollgruppe ohne Alzheimer. Die Gewebeproben stammen allesamt aus der Gewebesammlung des Neuropathologischen Labors der Universität Ulm, wo sie nach Einverständnis der Ethikkommission der Universität der Forschung zur Verfügung stehen. Nach der Autopsie wurden die Gehirne in Formaldehyd fixiert, danach in Paraffin oder in Polyethylenglycol für die Gewebeschnitte eingebettet und histopathologisch untersucht, um die Beta-Amyloid Verteilung quantitativ zu ermitteln. Für die biochemischen Untersuchungen zum Nachweis von modifizierten Varianten wurden Western-Blot Analysen an Hirnlysaten und Immunpräzipitationsschritte durchgeführt. Untersucht wurden unterschiedlichste Formen von Beta-Amyloid-Aggregaten: wasserlösliche, in Dispersion befindliche, Membran-gebundene und Plaque-assoziierte Aggregate.

Verantwortlich: Andrea Weber-Tuckermann

Weitere Informationen:
Prof. Dr. Dietmar Thal, Tel.: 08221 / 96-2163; Email: dietmar.thal@uni-ulm.de

Prof. Dr. Christine von Arnim, Tel.: 0731 / 50000 – 63011; Email: christine.arnim@uni-ulm.de
Prof. Dr. Marcus Fändrich, Tel.: 0731 / 50 – 32750; Email: marcus.faendrich@uni-ulm.de

Weitere Informationen:

http://brain.oxfordjournals.org/content/137/3/887.abstract?sid=51d685e6-5be0-4d2...

Andrea Weber-Tuckermann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt
16.10.2017 | Leibniz-Institut für Neurobiologie

nachricht Keimfreie Bruteier: Neue Alternative zum gängigen Formaldehyd
16.10.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Kalte Moleküle auf Kollisionskurs

Mit einer neuen Kühlmethode gelingt Wissenschaftlern am MPQ die Beobachtung von Stößen in einem dichten Strahl aus kalten und langsamen dipolaren Molekülen.

Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht...

Im Focus: Astronomen entdecken ungewöhnliche spindelförmige Galaxien

Galaxien als majestätische, rotierende Sternscheiben? Nicht bei den spindelförmigen Galaxien, die von Athanasia Tsatsi (Max-Planck-Institut für Astronomie) und ihren Kollegen untersucht wurden. Mit Hilfe der CALIFA-Umfrage fanden die Astronomen heraus, dass diese schlanken Galaxien, die sich um ihre Längsachse drehen, weitaus häufiger sind als bisher angenommen. Mit den neuen Daten konnten die Astronomen außerdem ein Modell dafür entwickeln, wie die spindelförmigen Galaxien aus einer speziellen Art von Verschmelzung zweier Spiralgalaxien entstehen. Die Ergebnisse wurden in der Zeitschrift Astronomy & Astrophysics veröffentlicht.

Wenn die meisten Menschen an Galaxien denken, dürften sie an majestätische Spiralgalaxien wie die unserer Heimatgalaxie denken, der Milchstraße: Milliarden von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

bionection 2017 erstmals in Thüringen: Biotech-Spitzenforschung trifft in Jena auf Weltmarktführer

13.10.2017 | Veranstaltungen

Tagung „Energieeffiziente Abluftreinigung“ zeigt, wie man durch Luftreinhaltemaßnahmen profitieren kann

13.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle

16.10.2017 | Physik Astronomie

Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt

16.10.2017 | Biowissenschaften Chemie

Gewebe mit Hilfe von Stammzellen regenerieren

16.10.2017 | Förderungen Preise