Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn alle an der DNA zerren - Molekulare Kräfte kontrollieren Form von Nanobausteinen

18.03.2010
Die gezielte Manipulation von Strukturen im Nanometerbereich ist eine Grundlage der modernen Biotechnologie. Zu den vielseitigsten Bausteinen im Bereich von Millionstel Millimetern gehört die DNA, der Träger der Erbinformation.

Im Organismus kommt das Molekül in linearen und zirkulären Formen vor, aus denen dann technologisch höhere Strukturen erzeugt werden können. Deren spezifische Form ist die Folge eines Wechselspiels mehrerer physikalischer Kräfte.

LMU-Forscher um den Biophysiker Professor Erwin Frey konnten in Zusammenarbeit mit Schweizer Wissenschaftlern nun klären, welches Gewicht diese Kräfte jeweils haben und welche effektive Form der Bausteine daraus resultiert. "Insgesamt ist uns eine quantitative Beschreibung von DNA-Ringen gelungen, sodass nun molekulare Eigenschaften wie etwa die Steifigkeit und der DNA-Durchmesser in nanoskopische Größen wie Form und Ausdehnung des Polymerrings übersetzt werden können", sagt Frey. "Wir hoffen, dass dieses Verständnis die technologische Entwicklung neuartiger Nanostrukturen ermöglicht." (Nanoletters online, 17. März 2010)

Die DNA weist einzigartige chemische Eigenschaften auf, die es ihr ermöglichen, sich selbst zusammenzubauen. In der Nanotechnologie wird das Molekül daher - anders als im Körper - nicht als Träger von Erbinformation genutzt, sondern als Baustein für eine Vielzahl von Strukturen. Ähnliches gilt für andere zelluläre Moleküle. Diese selbst aus vielen Untereinheiten bestehenden Bausteine, sogenannte Polymere, müssen aber gezielt manipuliert werden können, um die gewünschten Nanostrukturen zu bilden. Die Grundlage dafür ist das Verständnis der Kräfte, die Nanobausteinen wie dem DNA-Molekül spezifische Formen verleihen. Aus geometrischer Sicht bilden lineare Filamente hier die einfachsten Bausteine, während ringförmige Polymere die nächsthöhere Stufe der Komplexität sind.

Welche Form sich letztlich ausbildet, wird durch ein Wechselspiel physikalischer Kräfte bestimmt. So begünstigt die entropische Kraft eine "geknäulte", insgesamt stark verkrümmte Struktur, der die Biegesteifigkeit entgegenwirkt. Eine wichtige Rolle spielt auch die sogenannte sterische Verdrängung der einzelnen Polymersegmente. "Fraglich war nun, wieviel die einzelnen, auf molekularen Eigenschaften beruhenden Kräfte beitragen", berichtet Frey. "Das ist wichtig, weil die effektive Form der Bausteine daraus resultiert." Das Team um Frey hat deshalb in Zusammenarbeit mit der Gruppe von Professor Giovanni Dietler vom "Laboratory of the Physics of Living Matter" (EPFL) in Lausanne die Größe und Form zweidimensionaler halbflexibler DNA-Polymerringe untersucht.

Experimentell variierten die Forscher unter anderem die Länge der DNA-Stränge, um den Einfluss von elastischen und entropischen Kräften zu verändern. Durch theoretische Überlegungen wurde der Beitrag der sterischen Verdrängung untersucht. "Es hat sich unter anderem gezeigt, dass bei geringer Steifigkeit die dominierenden entropischen Kräfte kleine zigarrenförmige Knäuel entstehen lassen", so Frey. "Eine große Steifigkeit formt das Polymer dagegen als ausgedehnte Ellipse. Insgesamt ist uns eine quantitative Beschreibung von DNA-Ringen gelungen, sodass nun molekulare Eigenschaften wie die Steifigkeit in nanoskopische Größen wie Form und Ausdehnung des Polymerringes übersetzt werden können - was die technologische Entwicklung von Nanostrukturen begünstigen sollte." (suwe)

Das Projekt wurde im Rahmen des Exzellenzclusters "Nanosystems Initiative Munich" (NIM) durchgeführt sowie im Zuges des Strategieprozesses LMUinnovativ gefördert.

Publikation:
"Excluded volume effects on semiflexible ring polymers",
Fabian Drube, Karen Alim, Guillaume Witz, Giovanni Dietler, and Erwin Frey,
Nanoletters online, 17. März 2010
Ansprechpartner:
Professor Dr. Erwin Frey
Arnold-Sommerfeld-Center für Theoretische Physik und "Center for NanoScience" (CeNS) der LMU
Tel.: 089 / 2180 - 4537
Fax: 089 / 2180 - 4538
E-Mail: frey@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops