Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Algorithmen eröffnen Einblicke in die Zellentwicklung

31.08.2016

Durch RNA-Sequenzierung können Forscher messen, welche Gene in jeder einzelnen Zelle einer Probe abgelesen werden. Eine neue statistische Methode erlaubt es, so aus einem Zellgemisch unterschiedliche Entwicklungsprozesse herauszulesen, die nebeneinander ablaufen. Das berichten Forscherinnen und Forscher des Helmholtz Zentrums München in Zusammenarbeit mit Kollegen der Technischen Universität München in ‚Nature Methods‘.

Die Zellbiologie befasst sich heutzutage oft nicht mehr nur mit statischen Zuständen, sondern möchte vielmehr die dynamische Entwicklung von Zellen verstehen. Ein Beispiel dafür ist die Bildung verschiedener Typen von Blutzellen aus ihren Vorläufern, den Blutstammzellen. Um zu verstehen, wie dieser Prozess genetisch gesteuert wird, analysieren Wissenschaftler, welche Gene abgelesen werden - das sogenannte Transkriptom.


Entwicklung eines Verband von Blutstammzellen zu unterschiedlichen Zelltypen, Quelle: HMGU

„Dass wir heutzutage sogar das Transkriptom von Einzelzellen bestimmen können, ist für mich immer noch sehr erstaunlich“, sagt Erstautorin Laleh Haghverdi. „Vor allem, wenn man sich klar macht, dass eine typische Zelle nur wenige Billionstel Gramm RNA* in sich trägt.“ Die Verfügbarkeit dieser Daten beginnt nun, viele Forschungsfelder zu revolutionieren, verlangt aber auch neue statistische Methoden, um sie richtig zu interpretieren.

„So starten beispielsweise nie alle Zellen einer Probe gleichzeitig ihre Entwicklung und brauchen auch unterschiedlich lange. Daher haben wir es immer mit einem dynamischen Gemisch zu tun“, so die Doktorandin vom Institute of Computational Biology (ICB) am Helmholtz Zentrum München weiter. „Daraus die Abfolge von mehreren Schritten eines Prozesses zu konstruieren, ist enorm schwer, zumal die Zellen nur für eine Messung zur Verfügung stehen.“

Willkommen im Pseudozeitalter

Um also Entwicklungsprozesse aus der Messung eines einzigen Zeitpunkts, quasi einer Schnappschussmessung, zu entschlüsseln, entwickelten die Forscherinnen und Forscher um ICB-Direktor Prof. Dr. Dr. Fabian Theis einen Algorithmus namens Diffusion Pseudotime zur Interpretation von Einzelzell-Sequenzierungsdaten.

Dieser ordnet Zellen auf einer virtuellen Zeitachse – der Pseudozeit – entlang derer sie kontinuierliche Veränderungen im Transkriptom aufweisen. Dadurch lässt sich rekonstruieren, welche Gene nacheinander abgelesen werden. So können die Forscher grafisch darstellen, wie sich die Entwicklungspfade unterschiedlicher Zelltypen verzweigen (vgl. Bild).

„Wir können beispielsweise zeigen, wie sich ein relativ einheitlicher Verband von Blutstammzellen zu unterschiedlichen Zelltypen entwickelt“, erklärt Studienleiter Theis. „Während die einen zu roten Blutkörperchen werden, differenzieren andere zu endothelartigen Zellen. Diese Schicksale können wir anhand der Transkriptom-Daten der Einzelzellen nachzeichnen.“

Zudem erhalten die Wissenschaftler Information darüber, welche Genschalter hinter den Entwicklungen stecken. Der relativ diffuse Mix von Zellen, die sich auf verschiedenen Etappen ihrer Entwicklung befanden, kann so also am Rechner entwirrt werden und erlaubt nach der Analyse ein klares Bild auf die ablaufenden Einzelschritte.

Doch wenn es nach den Forschern geht, soll das nur der Anfang gewesen sein, denn die Prozesse der Blutbildung sind schon relativ gut verstanden. Sie dienten nur als Testobjekt für die Leistungsfähigkeit der Methode. „Künftig wollen wir uns vor allem Prozesse anschauen, die bisher unverstanden oder möglicherweise noch gar nicht entdeckt sind“, so Theis.**

Weitere Informationen

Hintergrund:
* RNA steht für Ribonukleinsäure. Bestimmte RNAs bilden die Abschrift von Genen und sind damit das Ausgangsmaterial für die Transkriptomanalysen.

** Unter anderem haben die Wissenschaftler in Zusammenarbeit mit experimentellen Instituten am Helmholtz Zentrum die Entwicklung von Zellen des Gehirns oder der Insulin produzierenden Betazellen in der Bauchspeicheldrüse auf der Agenda. Sie hoffen, dass durch das Verständnis für die Bildung einzelner Zellgruppen auch Möglichkeiten entstehen, in diese Prozesse einzugreifen - beispielsweise wenn sie krankheitsbedingt gestört sind.

Original-Publikation:
Haghverdi, L. et al. (2016): Diffusion pseudotime robustly 1 reconstructs lineage branching, Nature Methods, DOI: 10.1038/nmeth.3971
Link: http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.3971.html?WT.feed_n...

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

Das Institut für Computational Biology (ICB) führt datenbasierte Analysen biologischer Systeme durch. Durch die Entwicklung und Anwendung bioinformatischer Methoden werden Modelle zur Beschreibung molekularer Prozesse in biologischen Systemen erarbeitet. Ziel ist es, innovative Konzepte bereitzustellen, um das Verständnis und die Behandlung von Volkskrankheiten zu verbessern. http://www.helmholtz-muenchen.de/icb

Die Technische Universität München (TUM) ist mit mehr als 500 Professorinnen und Professoren, rund 10.000 Mitarbeiterinnen und Mitarbeitern und 39.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, ergänzt um Wirtschafts- und Bildungswissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands. http://www.tum.de

Ansprechpartner für die Medien:
Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-Mail: presse@helmholtz-muenchen.de

Fachliche Ansprechpartner:
Prof. Dr. Dr. Fabian Theis, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute of Computational Biology, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: +49 89 3187 4030 - E-Mail: fabian.theis@helmholtz-muenchen.de

Weitere Informationen:

https://www.helmholtz-muenchen.de/aktuelles/uebersicht/pressemitteilungnews/arti...

Soja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte