Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Akustische Nanomotoren

13.02.2018

Aktive Zelltransporter für den Cas9-sgRNA-Komplex mit Ultraschall-Antrieb

Für die Krebsforschung ist der Komplex Cas9-sgRNA ein außerordentlich wirkungsvolles Instrument, um zum Beispiel Tumorgene gezielt zu verändern. Eine Hürde stellt derzeit noch die Aufgabe dar, den Komplex quantitativ und schnell durch die Zellmembran und zum Genom zu bringen.


Wissenschaftler haben einen aktiven Nanomotor entwickelt, der das Genschneidesystem zielgerecht in der Zelle absetzt.

(c) Wiley-VCH

Amerikanische und dänische Wissenschaftler haben jetzt einen aktiven Nanomotor entwickelt, der das Genschneidesystem zielgerecht in der Zelle absetzt. Wie sie in der Zeitschrift Angewandte Chemie erläutern, erhält der Nanotransporter seinen Antrieb durch Ultraschall.

Die gezielte Veränderung von Genen gilt als hochinteressante Option für die Krebstherapie: Besonders, seit man kurz nach der Jahrtausendwende das adaptive bakterielle Immunabwehrsystem namens CRISPR und ihr Potenzial als Genschneidemaschinerie entdeckt hatte. Die heute benutzten CRISPR-Systeme zur Genveränderung setzten sich aus der „single-guide”-RNA oder sgRNA und dem Genschneideenzym der Cas-9-Nuklease zusammen. Während die sgRNA die Nuklease direkt zur gewünschten Gensequenz bringt, schneidet die Nuklease das Genom mit chirurgischer Effizienz.

Schwierig ist dagegen noch der Transport dieser großen Maschinerie von außen in die Zelle und zum Zielgenom. In der Zeitschrift Angewandte Chemie schlagen Liangfang Zhang und Joseph Wang von der University of California in San Diego und ihre Kollegen jetzt als aktiven Transporter Ultraschall-angetriebene Gold-Nanodrähte vor. Diese sollen den Cas9-sgRNA-Komplex nicht nur über die Zellmembran transportieren, sondern ihn in der Zelle auch zielgenau freisetzen.

Gold-Nanodrähte können eine Membran zwar durch Diffusion passiv überwinden. Eine aktive Beschleunigung durch einfache Ultraschallbehandlung ist jedoch durch die gegebene Asymmetrie ebenfalls möglich, wie die Autoren darlegen. „Die asymmetrische Form des Gold-Nanodraht-Motors, die im Herstellungsprozess angelegt wird, ist wesentlich für den akustischen Vortrieb”, heißt es in ihrem Artikel.

Den vollständigen Transporter setzten sie zusammen, indem sie den Cas-9-Protein/RNA-Komplex durch Sulfidbrücken am Gold-Nanodraht befestigten. Schwefelbindungen für die Verknüpfung von Motor und Ladung haben den Vorteil, dass diese Bindung in der Tumorzelle durch Glutathion wieder aufgebrochen wird.

Dieses kleine Peptid kommt als natürliche reduzierende Substanz in Tumorzellen besonders häufig vor. Es löst die Bindung des Cas9-sgRNA-Komplex zum Transporter-Draht, und der freigesetzte Komplex kann im Genom seine Funktion ausüben, zum Beispiel ein Gen ausschalten.

In ihrem Testsystem beobachteten die Wissenschaftler die Ausschaltung der Fluoreszenz von B16F10-Melanomzellen mit exprimiertem grünen fluoreszierenden Protein. Eine fünfminütigen Ultraschallbehandlung reichte, um den Nanomotor mit dem Cas9-sgRNA-Komplex in die Zelle eindringen zu lassen. Die Fluoreszenz wurde schon bei winzigsten Konzentrationen des Schneidekomplexes durch die Genausschaltung schnell und effektiv ausgelöscht.

Ein akustischer Nanomotor als aktiver Transporter für die Gentherapie, und das bei geringsten Mengen an Schneideenzym, ist ein bemerkenswertes Ergebnis, das in die Zukunft weist. Eine weitere Errungenschaft ist dessen einfacher Aufbau aus wenigen, leicht erhältlichen Komponenten.

Angewandte Chemie: Presseinfo 04/2018

Autor: Joseph Wang, University of California, San Diego (USA), http://joewang.ucsd.edu/

Link zum Originalbeitrag: https://doi.org/10.1002/ange.201713082

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Karin J. Schmitz | Gesellschaft Deutscher Chemiker e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics