Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Akku an Silizium aufladen, nicht an Kohlenstoff

12.10.2016

Anoden aus porös-amorphem Silizium könnten die Leistung von Lithiumionenakkumulatoren verbessern

Demnächst enthalten Lithiumionenakkumulatoren möglicherweise keine Anode aus Graphit mehr. Silizium als Anodenmaterial bietet eine viel höhere Ladungskapazität, aber seine Kristallinität war bislang von Nachteil. In der Zeitschrift Angewandte Chemie stellen chinesische Wissenschaftler eine poröse amorphe Siliziummodifikation vor, die anderen Anodenmaterialen in wiederaufladbaren Batterien deutlich überlegen sein könnte.


Anoden aus Silizium lösen vielleicht bald Graphit ab.

(c) Wiley-VCH

Die derzeit gängigste Anode in Lithiumionenakkumulatoren besteht aus Kohlenstoff in seiner Graphitmodifikation. Allerdings hat ausgerechnet Graphit eine relativ niedrige Ladungskapazität. Weitere bekannte Probleme von Lithiumionenbatterien sind eine geringe Zyklenanzahl, steigender interner Widerstand während der Ladezyklen, Alterung sowie Sicherheitsaspekte.

Die nächstliegende Alternative zu Kohlenstoff wäre Silicium, das eine fast zehnfach höhere theoretische Ladungskapazität als Graphit bietet. Der Lade- und Entladevorgang wird jedoch zum Problem: Ausdehnen und Schrumpfen bei den Zyklen führt zu Pulverisierung und Kapazitätseinbruch. Jian Yang und seine Kollegen an der Shangdong-Universität in China haben jetzt eine amorphe poröse Siliziummodifikation hergestellt, die diese Nachteile kompensiert.

Den amorphen Zustand von Silizium zu nehmen, sei eigentlich die logische Konsequenz, weil das Silizium sowieso amorph ende, erläutern die Wissenschaftler: "Da das Silizium durch die elektrochemische Lithiierung/Delithiierung im Endeffekt amorph wird, ist es sehr attraktiv, es von vorneherein in diesem Zustand einzusetzen."

Gezielt amorphes Silizium herzustellen, ist aber sehr schwierig, besonders wenn einfache Bedingungen gefragt sind. Das Verfahren, das die Forscher letztlich fanden, beinhaltet jedoch relativ sichere Ausgangsmaterialien wie zum Beispiel einen gängigen Glycolether als Lösungsmittel und leicht handhabbare Flüssigkeiten. Daher sollte ihr Verfahren insbesondere "für eine künftige Massenproduktion sehr attraktiv" sein, stellen die Autoren heraus.

Das auf diese Weise hergestellte amorph-poröse Silizium erfüllte die elektrochemischen Vorgaben hervorragend. Es besitzt eine dreimal bessere Kapazität als Graphit und eine weit besserer Zyklenstabilität als kristallines Silizium, was die Wissenschaftler durch die gezielt hergestellten großen Poren und eine luftoxidierte Oberfläche erklären können. Und weiteres Potenzial sei vorhanden: Etwas Kohlenstoff zusätzlich in die Struktur hinein, und die elektrochemische Leistungsfähigkeit werde wahrscheinlich noch besser werden, sagt Yang.

Angewandte Chemie: Presseinfo 32/2016

Autor: Jian Yang, Shandong University (China), mailto:yangjian@sdu.edu.cn

Link zum Originalbeitrag: http://dx.doi.org/10.1002/ange.201608146

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Renate Hoer | Gesellschaft Deutscher Chemiker e.V.

Weitere Berichte zu: Akku Angewandte Chemie Graphit Kohlenstoff Silicium Silizium

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics