Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Agent 007: Organische Moleküle als Geheimnisträger

20.04.2018

Bei der digitalen Übertragung ist der Schutz sensibler Informationen überaus wichtig. Viele Daten werden daher verschlüsselt losgeschickt. Meist verwenden Verfahren zum Entschlüsseln ein Passwort, und genau dieses ist in den allermeisten Fällen die Eintrittspforte für Codeknacker. Einen neuen und sehr sicheren Weg wählten Wissenschaftlerinnen und Wissenschaftler des Karlsruher Instituts für Technologie (KIT), indem sie Informatik mit Chemie paarten und ein gängiges Verschlüsselungsverfahren mit einem chemischen Passwort kombinierten. Über ihre Entwicklung berichten sie nun in einer Open Access Publikation in Nature Communications. (DOI: 10.1038/s41467-018-03784-x ).

Bereits jetzt existieren sehr gute und effektive Verschlüsselungsprogramme, die fast nicht zu überwinden sind, vorausgesetzt die Rechnerleistung ist begrenzt. Schwachstelle bleibt dabei immer das Passwort. Wenn es schlecht gewählt ist und nicht den nötigen Sicherheitsansprüchen genügt, bildet es die Achillesferse der gesamten Verschlüsselung.


Unsichtbares Passwort: Die Information für die Verschlüsselung steckt im Molekül, zum Beispiel als Flüssigkeit auf Papier aufgetropft.

Foto: Amadeus Bramsiepe, KIT

Genau an dieser Stelle setzen die Wissenschaftler des KIT an: Sie verbergen die Information für das Passwort in einem kleinen organischen Molekül. Und während die verschlüsselte digitale Information dann gewissermaßen öffentlich reisen kann, wird der Schlüssel zum Lesen der Information unsichtbar und ohne Wissen der Umwelt in Form einer kleinen Menge der chemischen Verbindung, beispielsweise aufgetropft auf Papier, transportiert.

„Das Verfahren eignet sich natürlich nur für Anwendungen, die eine sehr hohe Sicherheitsstufe benötigen und damit auch einen gewissen Aufwand rechtfertigt, etwa für die Übermittlung von Geheimdienstinformationen oder bei der Kommunikation in Botschaften“, so Professor Michael Meier vom Institut für Organische Chemie. Auch um Plagiate von Originalen zu unterscheiden oder Produktinformationen wie Charge oder Produktionsdatum fälschungssicher am Produkt anzubringen, bietet sich das Verfahren an.

„Wir können mit geringsten Mengen arbeiten und finden diese auch in Materialien, bei denen man mit anderen chemischen Verbindungen, etwa DNA-Molekülen, nicht weit kommt“, so Erstautor Andreas Boukis. So gelang es den Wissenschaftlern, die chemischen Schlüssel aus unterschiedlichen Trägermaterialien, beispielsweise Papier, Parfüm, Instantkaffee, Grüner Tee, Zucker oder sogar Schweineblut mit hoher Zuverlässigkeit zu isolieren.

Die Information des chemischen Schlüssels steckt in der Abfolge seiner Bausteine und den daran angehängten Seitenketten. Jeder dieser chemischen Komponenten erhält einen Buchstaben und eine Ziffer zugewiesen, es ergibt sich dadurch, je nachdem welche Bausteine in gegebener Reihenfolge und mit welchen Seitenketten synthetisiert werden, ein individueller alphanumerischer Code für das Passwort-Molekül, der mit einem eigens dafür entwickelten Computerprogramm ausgelesen und in einen binären Code umgewandelt wird.

Für die Synthese verwendeten die Wissenschaftler eine gängige sogenannte Multikomponentenreaktion. Diese ermöglicht es, verhältnismäßig unaufwendig in einem Schritt ein zuvor definiertes Molekül zu synthetisieren. Als einzelne Grundbausteine wählten die Forscher geeignete kommerziell erhältliche Verbindungen. Mit dieser Bibliothek aus 130 verschiedenen Grundbausteinen lassen sich 500 000 chemische Schlüssel synthetisieren, die jeweils eine Grundinformation von 18 Bit enthalten.

Durch die Kombination verschiedener chemischer Schlüssel, die auch zeitlich und örtlich unterschiedlich übermittelt werden können, lässt sich die Informationsspeichergröße und damit die Sicherheit weiter erhöhen. Da die Verbindungen sehr robust sind, eignen sie sich für viele unterschiedliche Trägermaterialien. Dank einer weiteren Eigenschaft sind sie zudem leicht zu finden: Sie tragen in einer Position eine besondere Seitenkette, welche die Rückgewinnung erleichtert, sogenannte Perfluoralkyle.

Diese haben ähnliche Eigenschaften wie Teflon, das heißt sie wechselwirken nicht gerne mit wässrigen (polaren) oder fetthaltigen (unpolaren) Medien, sondern nur mit anderen perfluorierten Verbindungen, darum kann man diese Moleküle selektiv aus einem Gemisch abtrennen.

Die Analyse der isolierten Verbindungen geschieht im Anschluss mit einer gängigen, hochsensiblen Analysemethode, der Massenspektrometrie. Dabei wird die Masse ganzer Moleküle, aber auch die definierter Bruchstücke bestimmt. Kennt man die Bibliothek der 130 möglichen Ausgangskomponenten, lässt sich so auf das Molekül rückschließen und man kann dann das Passwort zum Entschlüsseln ablesen.

„Die Idee, Informationen über geheime Kanäle zu schicken, ist nicht neu, unser Verfahren zeichnet aber aus, dass wir einen besonders robusten geheimen Kanal zur Verfügung stellen, welcher mit minimalen Mengen an Schlüsselmolekül auskommt,“ fasst Professor Dennis Hofheinz vom Institut für Theoretische Informatik die Vorteile der chemischen Passwörter zusammen.

Entwickelt wurde das neue Verfahren im Rahmen des Sonderforschungsbereiches (SFB) 1176 „Molekulare Strukturierung weicher Materie“ der Deutschen Forschungsgemeinschaft (DFG), der vom KIT koordiniert wird. Neun Millionen Euro stehen dem im Januar 2016 gestarteten SFB in den ersten vier Jahren zur Verfügung.

Originalpublikation:

A. C. Boukis, K. Reiter, M. Frölich, D. Hofheinz und M. A. R. Meier: Multicomponent reactions provide key molecules for secret communication. Nature Communications, 2018. doi:10.1038/s41467-018-03784-x External Link.

https://www.nature.com/articles/s41467-018-03784-x External Link


Weitere Materialien:

Originalpublikation:

https://www.nature.com/articles/s41467-018-03784-x External Link


Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 26 000 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

Weiterer Pressekontakt:
Regina Link
Redakteurin/Pressereferentin
Tel.: +49 721 608-21158
regina link∂kit edu

Monika Landgraf | Karlsruher Institut für Technologie
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics