Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ähnlichkeiten führen zu falsch gefalteten Proteinen

31.05.2011
Zahlreiche Krankheiten sind auf falsch gefaltete Proteine, bestehend aus Aminosäuren, zurückzuführen. Forscher der Universität Zürich haben jetzt mit einer speziellen Spektroskopie diese fehlerhafte Proteinfaltung untersucht. Wie sie in «Nature» berichten, sind Fehlfaltungen häufiger, wenn die Abfolge der Aminosäuren in den benachbarten Domänen sehr ähnlich ist.

Proteine sind die zentralen molekularen Maschinen in unserem Körper. Sie erfüllen eine grosse Bandbreite von Funktionen, von der Verdauung und Verarbeitung von Nährstoffen über die Umwandlung von Energie und die Strukturierung von Zellen, bis zur Übermittlung von Signalen in Zellen und im gesamten Körper.

Um diese hochspezifischen Funktionen erfüllen zu können, müssen Proteine eine wohldefinierte dreidimensionale Struktur annehmen. Bemerkenswerterweise finden sie diese Struktur in den meisten Fällen ohne fremde Hilfe, nachdem sie in der Zelle als langes Kettenmolekül aus ihren Einzelbausteinen, den Aminosäuren, gebildet wurden.

Dieser Prozess der Faltung von Proteinen kann allerdings auch fehlschlagen, was dann dazu führt, dass die betroffenen Proteine ihre Funktion nicht mehr ausüben können. In manchen Fällen kann dies sogar noch weitreichendere Folgen haben, wenn diese falsch gefalteten Proteine verklumpen und neurodegenerative Krankheiten wie Morbus Alzheimer oder Parkinson auslösen.

Eine wichtige Bedingung in der Entwicklung von Proteinen im Laufe der Evolution war dementsprechend, derartige «Fehlfaltungsprozesse» zu vermeiden. Dies ist allerdings nicht einfach, denn die gleichen molekularen Wechselwirkungen, die die korrekte Struktur des einzelnen Proteins stabilisieren, können auch zu Wechselwirkungen zwischen Proteinmolekülen und damit zu ihrer Fehlfaltung führen.

Forscherinnen und Forscher der Universitäten Zürich und Cambridge haben jetzt eine spezielle spektroskopische Methode verwendet, die Einzelmolekülfluoreszenzspektroskopie, um herauszufinden, unter welchen Voraussetzungen Fehlfaltung stattfindet. Die Gruppe um Prof. Benjamin Schuler von der UZH untersuchte Teile des grössten Proteins unseres Körpers, des Titins. Dieses trägt in den Muskeln zur Stabilität und Elastizität der Muskelfasern bei. Man geht davon aus, dass bei starker Belastung des Muskels einzelne Teile des Titins, die Domänen, sich entfalten können, um eine Beschädigung des Muskelgewebes zu verhindern. Wenn sich der Muskel wieder entspannt, besteht die Gefahr, dass sich diese entfalteten Domänen falsch zusammenlagern. Diese Gefahr besteht in ähnlicher Form auch für andere Proteine, die aus mehreren Domänen bestehen.

Für ihre Studie haben die Forschenden kleine Farbstoffmoleküle als Sonden im Protein angebracht. «Mit unserer laserspektroskopischen Methode konnten mittels Energietransfer zwischen den Sonden Abstände auf molekularer Skala bestimmt werden, also im Bereich einiger Millionstel Millimeter», erklärt Prof. Benjamin Schuler. So liessen sich die Strukturen richtig und falsch gefalteter Proteine unterscheiden und damit der Anteil an Fehlfaltung bestimmen.

«Die Untersuchung verschiedener Domänen des Titins in unseren Experimenten hat gezeigt, dass die Wahrscheinlichkeit der Fehlfaltung steigt, wenn benachbarte Domänen sich in der Abfolge ihrer Aminosäuren sehr ähnlich sind», sagt Prof. Schuler. Dies ist anscheinend der Grund dafür, dass in Proteinen die benachbarten Domänen eine geringe Ähnlichkeit haben. «Offenbar handelt es sich dabei um eine wichtige evolutionäre Strategie, um die Fehlfaltung von Proteinen zu vermeiden und so ihre maximale Funktionalität zu gewährleisten», so Schuler.

Literatur:
Borgia, Madeleine, Borgia Alessandro, Best, Robert B., Steward Annette, Nettels Daniel, Wunderlich, Bengt, Schuler Benjamin & Clarke Jane: Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins, in: Nature, doi:10.1038/nature10099.
Kontakt:
Prof. Benjamin Schuler
Institut für Biochemie
Universität Zürich
Tel. +41 44 63 55535
E-Mail: schuler@bioc.uzh.ch

Beat Müller | Universität Zürich
Weitere Informationen:
http://www.mediadesk.uzh.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nerven steuern die Bakterienbesiedlung des Körpers
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Mit künstlicher Intelligenz zum chemischen Fingerabdruck
26.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie