Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ähnlichkeiten führen zu falsch gefalteten Proteinen

31.05.2011
Zahlreiche Krankheiten sind auf falsch gefaltete Proteine, bestehend aus Aminosäuren, zurückzuführen. Forscher der Universität Zürich haben jetzt mit einer speziellen Spektroskopie diese fehlerhafte Proteinfaltung untersucht. Wie sie in «Nature» berichten, sind Fehlfaltungen häufiger, wenn die Abfolge der Aminosäuren in den benachbarten Domänen sehr ähnlich ist.

Proteine sind die zentralen molekularen Maschinen in unserem Körper. Sie erfüllen eine grosse Bandbreite von Funktionen, von der Verdauung und Verarbeitung von Nährstoffen über die Umwandlung von Energie und die Strukturierung von Zellen, bis zur Übermittlung von Signalen in Zellen und im gesamten Körper.

Um diese hochspezifischen Funktionen erfüllen zu können, müssen Proteine eine wohldefinierte dreidimensionale Struktur annehmen. Bemerkenswerterweise finden sie diese Struktur in den meisten Fällen ohne fremde Hilfe, nachdem sie in der Zelle als langes Kettenmolekül aus ihren Einzelbausteinen, den Aminosäuren, gebildet wurden.

Dieser Prozess der Faltung von Proteinen kann allerdings auch fehlschlagen, was dann dazu führt, dass die betroffenen Proteine ihre Funktion nicht mehr ausüben können. In manchen Fällen kann dies sogar noch weitreichendere Folgen haben, wenn diese falsch gefalteten Proteine verklumpen und neurodegenerative Krankheiten wie Morbus Alzheimer oder Parkinson auslösen.

Eine wichtige Bedingung in der Entwicklung von Proteinen im Laufe der Evolution war dementsprechend, derartige «Fehlfaltungsprozesse» zu vermeiden. Dies ist allerdings nicht einfach, denn die gleichen molekularen Wechselwirkungen, die die korrekte Struktur des einzelnen Proteins stabilisieren, können auch zu Wechselwirkungen zwischen Proteinmolekülen und damit zu ihrer Fehlfaltung führen.

Forscherinnen und Forscher der Universitäten Zürich und Cambridge haben jetzt eine spezielle spektroskopische Methode verwendet, die Einzelmolekülfluoreszenzspektroskopie, um herauszufinden, unter welchen Voraussetzungen Fehlfaltung stattfindet. Die Gruppe um Prof. Benjamin Schuler von der UZH untersuchte Teile des grössten Proteins unseres Körpers, des Titins. Dieses trägt in den Muskeln zur Stabilität und Elastizität der Muskelfasern bei. Man geht davon aus, dass bei starker Belastung des Muskels einzelne Teile des Titins, die Domänen, sich entfalten können, um eine Beschädigung des Muskelgewebes zu verhindern. Wenn sich der Muskel wieder entspannt, besteht die Gefahr, dass sich diese entfalteten Domänen falsch zusammenlagern. Diese Gefahr besteht in ähnlicher Form auch für andere Proteine, die aus mehreren Domänen bestehen.

Für ihre Studie haben die Forschenden kleine Farbstoffmoleküle als Sonden im Protein angebracht. «Mit unserer laserspektroskopischen Methode konnten mittels Energietransfer zwischen den Sonden Abstände auf molekularer Skala bestimmt werden, also im Bereich einiger Millionstel Millimeter», erklärt Prof. Benjamin Schuler. So liessen sich die Strukturen richtig und falsch gefalteter Proteine unterscheiden und damit der Anteil an Fehlfaltung bestimmen.

«Die Untersuchung verschiedener Domänen des Titins in unseren Experimenten hat gezeigt, dass die Wahrscheinlichkeit der Fehlfaltung steigt, wenn benachbarte Domänen sich in der Abfolge ihrer Aminosäuren sehr ähnlich sind», sagt Prof. Schuler. Dies ist anscheinend der Grund dafür, dass in Proteinen die benachbarten Domänen eine geringe Ähnlichkeit haben. «Offenbar handelt es sich dabei um eine wichtige evolutionäre Strategie, um die Fehlfaltung von Proteinen zu vermeiden und so ihre maximale Funktionalität zu gewährleisten», so Schuler.

Literatur:
Borgia, Madeleine, Borgia Alessandro, Best, Robert B., Steward Annette, Nettels Daniel, Wunderlich, Bengt, Schuler Benjamin & Clarke Jane: Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins, in: Nature, doi:10.1038/nature10099.
Kontakt:
Prof. Benjamin Schuler
Institut für Biochemie
Universität Zürich
Tel. +41 44 63 55535
E-Mail: schuler@bioc.uzh.ch

Beat Müller | Universität Zürich
Weitere Informationen:
http://www.mediadesk.uzh.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie