Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Achillesferse pathogener Bakterien entdeckt

14.12.2012
Max-Planck-Forscher finden mögliches neues Angriffsziel für Antibiotika in Krankheitserregern

Multiresistente Bakterien breiten sich vor allem in Krankenhäusern und Pflegeheimen erfolgreich aus. Ihre Unempfindlichkeit gegenüber vorhandenen Antibiotika macht die Suche nach neuen Wirkstoffen immer dringender.

Forscher vom Göttinger Max-Planck-Institut für biophysikalische Chemie haben jetzt einen möglichen neuen Angriffspunkt im Kampf gegen Bakterien ausgemacht: den Faktor EF-P. Wie sie herausfanden, spielt EF-P bei der Herstellung von Proteinen eine Schlüsselrolle, die beispielsweise für den Angriff von EHEC und Salmonellen auf ihre Wirtszellen unentbehrlich sind. Die Ergebnisse der Wissenschaftler könnten dazu beitragen, eine neue Generation von Antibiotika zu entwickeln, mit der sich auch Infektionen durch resistente Erreger bekämpfen lassen.

Bakterien in Krankenhäusern können zu einer großen Gefahr für Patientinnen und Patienten werden: Allein in Deutschland erkranken dort nach Schätzungen des Robert-Koch-Instituts jährlich bis zu 600000 Menschen an einer bakteriellen Infektion, rund 15000 sterben daran. Ein steigender Anteil dieser Infektionen wird durch sogenannte multiresistente Erreger ausgelöst – Bakterien, die gegen Antibiotika unempfindlich geworden sind. Experten warnen bereits länger, dass neue Antibiotika nicht schnell genug bereitgestellt werden können, um solche Krankheitserreger zu bekämpfen.

Ein mögliches Angriffsziel für eine neue Generation von Antibiotika haben jetzt Wissenschaftler um Marina Rodnina, Leiterin der Abteilung Physikalische Biochemie am Max-Planck-Institut für biophysikalische Chemie, entdeckt: ein bakterielles Protein namens Elongationsfaktor P, EF-P. Fehlt Salmonellen oder E. coli-Darmbakterien das EF-P, sind die Bakterien in ihrer Fitness deutlich beeinträchtigt. Doch seine genaue Funktion gab Forschern bislang Rätsel auf.

Mit strukturbiologischen Arbeiten hat der Nobelpreisträger Tom Steitz von der Yale University (New Haven, USA) gezeigt, dass EF-P an die molekularen Proteinfabriken der Zelle, die Ribosomen, bindet. Ribosomen fügen die einzelnen Bausteine der Proteine – die Aminosäuren – nach den in den Genen gespeicherten Bauplänen aneinander. „Tom Steitz’ Versuche legen nahe, dass EF-P die Proteinproduktion in Bakterien irgendwie beeinflussen kann. Allerdings wissen wir, dass die meisten Proteine ganz ohne EF-P hergestellt werden“, sagt Marina Rodnina. „Für uns war die spannende Frage: Haben wir bisher Proteine übersehen, die nicht auf dem bisher bekannten Weg produziert werden können und EF-P benötigen? Und wenn ja: Welche Proteine sind das?“

Für die Nachwuchswissenschaftler Lili Dörfel und Ingo Wohlgemuth begann die Suche nach der „Nadel im Heuhaufen“. In aufwendigen Laborexperimenten suchten sie systematisch nach Aminosäure-Kombinationen, die sich nur mithilfe von EF-P verknüpfen ließen – und wurden fündig. Proteine, die mehr als zweimal hintereinander die Aminosäure Prolin enthielten, ließen sich nur mit EF-P effizient herstellen. „Prolin-reiche Proteine sind nicht nur für das Wachstum der Bakterien wichtig. Sie bilden auch gefährliche Angriffswerkzeuge von Salmonellen oder vom enterohämorrhagischen E. coli-Bakterium EHEC“, erklärt Wohlgemuth. Rund 270 der insgesamt 4000 E. coli-Proteine enthalten ein solches Aminosäuremuster. „Unsere Ergebnisse haben gezeigt, dass EF-P in der Tat ein weiterer wichtiger Faktor bei der Proteinproduktion ist, der in allen bisher untersuchten Bakterien vorkommt“, so der Nachwuchsforscher.

Die Proteinherstellung ist in Bakterien neben der Zellwandsynthese und der Vervielfältigung des Erbguts ein Hauptangriffsziel heutiger Antibiotika. Allerdings macht die steigende Anzahl multiresistenter Bakterienstämme die Suche nach neuen Wirkstoffen immer dringlicher. „EF-P kommt zwar auch in den Zellen unseres Körpers vor, doch unterscheidet es sich in wichtigen Details von seinem bakteriellen Pendant. Mit EF-P haben wir somit einen vielversprechenden neuen Angriffspunkt gefunden, um multiresistente Erreger zu bekämpfen ohne die Proteinproduktion unserer eigenen Zellen zu hemmen“, erklärt Rodnina. EF-P und weitere Proteine, die dieses in der Bakterienzelle regulieren, könnten Ziele für eine neue Generation von Antibiotika sein, die sehr spezifisch wirken, so die Hoffnung der Göttinger Max-Planck-Forscher.

Ansprechpartner

Prof. Marina V. Rodnina,
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Telefon: +49 551 201-2901
Fax: +49 551 201-2905
E-Mail: rodnina@­mpibpc.mpg.de
Dr. Ingo Wohlgemuth,
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Telefon: +49 551 201-2924
E-Mail: Ingo.Wohlgemuth@­mpibpc.mpg.de
Dr. Carmen Rotte,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Telefon: +49 551 201-1304
Fax: +49 551 201-1151
E-Mail: crotte@­gwdg.de

Originalpublikation
Lili K. Doerfel, Ingo Wohlgemuth, Christina Kothe, Frank Peske, Henning Urlaub, Marina V. Rodnina
EF-P is essential for rapid synthesis of proteins containing consecutive proline residues.

Science, 13. Dezember 2012

Prof. Marina V. Rodnin | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6680521/proteinbildung_in_bakterien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das große Aufräumen nach dem Stress
25.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht Superkondensatoren aus Holzbestandteilen
24.05.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Das große Aufräumen nach dem Stress

25.05.2018 | Biowissenschaften Chemie

APEX wirft einen Blick ins Herz der Finsternis

25.05.2018 | Physik Astronomie

Weltneuheit im Live-Chat erleben

25.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics