Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Abwehrzellen reifen müssen – LMU-Mediziner beweisen Effektivität von Immuntherapie

04.04.2011
Die körpereigene Immunabwehr gegen Tumoren kann durch eine Therapie mit sogenannten CpG-DNA-Oligonukleotiden – dies sind kurze Stücke des Erbmoleküls DNA – aktiviert werden.

Diese Behandlung wird derzeit als mögliche Krebstherapie getestet. Manche Ergebnisse deuten nun aber darauf hin, dass die CpG-Therapie auch zu einer Zunahme sogenannter myeloider Suppressorzellen (MDSC) führen kann.

Diese Immunzellen unterdrücken die Körperabwehr aktiv, was der Krebstherapie zuwiderlaufen würde. Wissenschaftler um die Privatdozentin Dr. Carole Bourquin von der Abteilung für Klinische Pharmakologie des Klinikums der Universität München konnten nun aber erstmals zeigen, dass die CpG-Therapie die MDSC ausschaltet, indem sie deren Reifung in Gang bringt. Die gereiften Zellen verlieren aber ihre immunsuppressive Wirkung. Damit ist die Frage, ob die CpG-Gabe die Zahl der MDSC steigert, nicht mehr ausschlaggebend, weil die Zellen im Gegenzug zur Reifung gebracht und somit „immunologisch unwirksam“ gemacht werden.

Eine Behandlung mit CpG als unterstützende Maßnahme könnte sogar die Effektivität von anderen Immuntherapien steigern. „Dieser Befund ist essenziell im Hinblick auf eine mögliche therapeutische Nutzung von CpG-Oligonukleotiden“, betont Bourquin. Nun wollen die Wissenschaftler eine erfolgreiche Immuntherapie gegen Tumoren des Magen-Darm-Trakts entwickeln.

Das Immunsystem hat vor allem die Aufgabe, bei drohenden Infektionen Alarm zu schlagen und die körpereigenen Abwehrzellen gegen eingedrungene Erreger in Stellung zu bringen. Aber es kann auch fehlerhafte körpereigene Zellen erkennen und zerstören – so setzt sich der Körper gegen Tumoren zur Wehr. Diese natürlichen Abwehrmechanismen werden genutzt, wenn bei einer Immuntherapie körpereigene Abwehrzellen gezielt auf Krebszellen angesetzt werden. Auch eine von dem Team um Bourquin entwickelte neuartige Therapie setzt darauf, die natürliche Immunabwehr für den Kampf gegen Tumorzellen zu nutzen: Die Wissenschaftler verwenden kurze Moleküle aus DNA, sogenannte CpG-DNA-Oligonukleotide, um das körpereigene Abwehrsystem zu aktivieren.

Allerdings können Tumoren das Immunsystem auch austricksen und auf unterschiedlich Weise dafür sorgen, dass sie von den Abwehrzellen nicht erkannt werden – oder dass die Immunreaktion unterdrückt wird. Sogenannte Immunsuppressorzellen spielen dabei eine wichtige Rolle. Im Blickfeld der Forschung liegen dabei vor allem myeloide Suppressorzellen (MDSC). „Darunter versteht man eine heterogene Gruppe unreifer Abwehrzellen, die aus dem Knochenmark stammen und bei Krebserkrankungen in stark erhöhter Zahl im Blut und im Tumorgewebe nachzuweisen sind“, erklärt Bourquin.

MDSC tragen bei Krebspatienten zur Tumorentwicklung bei und behindern eine erfolgreiche Immuntherapie gegen den Krebs, da sie das Immunsystem aktiv unterdrücken. Die von Bourquin untersuchte CpG-Therapie hat sich bereits in früheren Studien an Mäusen als effizient erwiesen, obwohl hohe MDSC-Konzentrationen im Mausmodell nachgewiesen werden konnten. Vor Kurzem wurde zudem berichtet, dass die CpG-Therapie sogar zu einem Anstieg an MDSC führen kann. „Dies ist für eine Krebstherapie natürlich unerwünscht. Deshalb war es essenziell zu untersuchen, welche Auswirkungen die CpG-Therapie auf die Aktivität der MDSC hat“, sagt Bourquin.

Ihr Team konnte nun erstmals an Tumoren des Magen-Darm-Trakts zeigen, dass die Therapie mit CpG die MDSC zu ausdifferenzierten Abwehrzellen reifen lässt, und zwar mit einem hochwillkommenen Nebeneffekt: Die Zellen verlieren dann ihre immunsuppressive Wirkung. Verantwortlich dafür ist das Zytokin Interferon-alpha, das bei der Aktivierung von Immunzellen durch CpG produziert wird. Auch die Behandlung mit synthetisch hergestelltem Interferon-alpha führte dazu, dass die Immunantwort nicht mehr durch MDSC gedämpft wurde. „Dieses Ergebnis ist eine wichtige Voraussetzung für die erfolgreiche Krebs-Immuntherapie in der Zukunft“, erklärt Bourquin, die nun die Therapie gegen Tumoren des Magen-Darm-Trakts weiter entwickeln möchte.

Das Projekt entstand im Rahmen des Exzellenzclusters „Center for Integrated Protein Science Munich“ (CiPSM) und wurde im Rahmen der Initiative LMUexcellent mit einer Forschungsprofessur für Professor Stefan Endres, einen Co-Autor der Studie, gefördert. (göd)

Publikation:
„CpG Blocks Immunosuppression by Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice“;
C. Zoglmeier, H. Bauer, D. Nörenberg, G. Wedekind, P. Bittner, N. Sandholzer, M. Rapp, D. Anz, S. Endres, C. Bourquin;
Clinical Cancer Research 17 (7); 1-11 (2011)
doi: 10.1158/1078-0432.CCR-10-2672
Ansprechpartner:
PD Dr. Carole Bourquin
Abteilung für Klinische Pharmakologie
Tel.: 089 / 5160 - 7331
Fax: 089 / 5160 - 7330
E-Mail: carole.bourquin@med.lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nerven steuern die Bakterienbesiedlung des Körpers
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Mit künstlicher Intelligenz zum chemischen Fingerabdruck
26.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie