Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Abwehrzellen des Blutes können im Gehirn Nothilfe leisten

22.10.2012
Gemeinsame Pressemitteilung des Deutschen Zentrums für Neurodegenerative Erkrankungen und des Hertie-Instituts für klinische Hirnforschung

Immunzellen aus dem Blutstrom können den Ausfall analoger Abwehrzellen im Gehirn kompensieren. Dies hat ein Forscherteam des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) und des Tübinger Hertie-Instituts für klinische Hirnforschung festgestellt.

Die Ergebnisse der Laborstudie könnten den Weg für neue Therapien gegen Erkrankungen des Nervensystems weisen. Die Wissenschaftler berichten darüber im Fachjournal „Proceedings of the National Academy of Sciences of the United States America“ (PNAS).

Eine Armada an Zellen bewahrt den Körper vor Krankheitserregern und gefährlichen Substanzen. Als besonders schützenswerter Bereich ist das Gehirn sogar mit einem eigenen Arsenal solcher Abwehrzellen ausgestattet: den „Mikroglia“. Andere Immunzellen treiben indessen durch die Blutbahn und sind üblicherweise vom Gehirn ausgeschlossen.

Grund dafür ist die sogenannte Blut-Hirn-Schranke. „Das ist eine Art Filter in den Blutgefäßen, die das Gehirn versorgen“, erläutert der Neurowissenschaftler Dr. Nicholas Varvel, der an der neuen Studie federführend beteiligt war. „Die Blut-Hirn-Schranke schützt das Gehirn vor Krankheitserregern. Sie verhindert aber auch, dass manche Körperzellen ins Gehirn vordringen.“

Doch unter besonderen Bedingungen können Immunzellen des Blutes durchaus ins Gehirn gelangen und die Funktion dortiger Zellen übernehmen. Dies stellten Varvel und seine Kollegen aus dem Team um Prof. Mathias Jucker bei Untersuchungen an Mäusen fest. Die Tiere hatten durch gentechnische Methoden in Verbindung mit der Verabreichung eines Wirkstoffes nahezu alle Mikroglia eingebüßt. Angesichts dieser Notsituation setzte das Gehirn eine Art Zuwanderungsprogramm in Kraft: Innerhalb kurzer Zeit wurde es von Monozyten bevölkert – Immunzellen, die für gewöhnlich nur im Blutstrom zirkulieren.

Die Monozyten waren auch noch ein halbes Jahr nach Versuchsstart im Hirngewebe der Mäuse zu finden. Die eigentlich fremden Immunzellen hatten sich also dauerhaft angesiedelt, wobei sie auf Verletzungen und andere Reize in ähnlicher Weise reagierten wie die ursprünglichen Mikroglia. „Dies zeigt, dass das Gehirn auf extreme Situationen flexibel reagieren kann und bemüht ist, sein Immunsystem instand zu halten“, so Varvel.

Varvel und seine Kollegen fragen sich deshalb: Lassen sich die Immunzellen des Blutes vielleicht zur Behandlung neurodegenerativer Erkrankungen einsetzen? Bei solchen Störungen des Nervensystems, zu denen auch die Alzheimer-Krankheit zählt, verlieren Hirnzellen allmählich ihre Funktion, wodurch es zu Gedächtnisschwund und Demenz kommen kann. „Im Krankheitsfall sind Monozyten möglicherweise in der Lage, die Aufgaben geschädigter Mikroglia zu übernehmen“, sagt Varvel. „Auch könnte man darüber nachdenken, mit Hilfe der Monozyten Medikamente ins Gehirn zu schleusen. Das ist aber noch Zukunftsmusik. Hier besteht sicher noch Forschungsbedarf.“

Originalveröffentlichung:
„Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells“, Nicholas H. Varvel, Stefan A. Grathwohl, Frank Baumann, Christian Liebig, Andrea Bosch, Bianca Brawek, Dietmar R. Thald, Israel F. Charo, Frank L. Heppnerf, Adriano Aguzzi, Olga Garaschuk, Richard M. Ransohoff, and Mathias Jucker, Proceedings of the National Academy of Sciences (PNAS), online unter: www.pnas.org/cgi/doi/10.1073/pnas.1210150109

Das Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE) ist eine Einrichtung in der Helmholtz-Gemeinschaft Deutscher Forschungszentren. Es untersucht Ursachen neurodegenerativer Erkrankungen und entwickelt Strategien zur Prävention, Therapie und Pflege. Das DZNE kooperiert an seinen neun Standorten in Berlin, Bonn, Dresden, Göttingen, Magdeburg, München, Rostock/Greifswald, Tübingen und Witten eng mit Hochschulen, Universitätskliniken und außeruniversitären Partnerinstituten. In Tübingen kooperiert es mit der Eberhard-Karls-Universität Tübingen, dem Universitätsklinikum Tübingen und dem Hertie-Institut für klinische Hirnforschung. Website: www.dzne.de

Das Hertie-Institut für klinische Hirnforschung (HIH) in Tübingen beschäftigt sich mit einem der faszinierendsten Forschungsfelder der Gegenwart: der Entschlüsselung des menschlichen Gehirns. Im Zentrum steht dabei die Frage, wie bestimmte Erkrankungen die Arbeitsweise dieses Organs beeinträchtigen. Vor diesem Hintergrund werden am HIH die informationstheoretischen und neuronalen Grundlagen wichtiger Hirnfunktionen wie Wahrnehmung, Gedächtnisleistung oder Lernverhalten untersucht. Unter anderem werden auch hirnorientierte Anwendungen für die Technik erforscht. Website: www.hih-tuebingen.de

Kontakt
Dr. Nicholas Varvel
Deutsches Zentrum für Neurodegenerative Erkrankungen & Hertie-Institut für klinische Hirnforschung, Tübingen
Tel.: 07071/29-81924
nicholas.varvel@dzne.de
Dr. Dirk Förger
Leiter Presse- und Öffentlichkeitsarbeit
Deutsches Zentrum für Neurodegenerative Erkrankungen, Bonn
Tel.: 0228/43302-260
dirk.foerger@dzne.de
Silke Jakobi
Leiterin Kommunikation
Hertie-Institut für klinische Hirnforschung, Tübingen
Tel.: 07071/29-88800
silke.jakobi@medizin.uni-tuebingen.de

Marcus Neitzert | idw
Weitere Informationen:
http://www.uni-tuebingen.de
http://www.dzne.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält
22.05.2017 | Ruhr-Universität Bochum

nachricht Myrte schaltet „Anstandsdame“ in Krebszellen aus
22.05.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie